

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A TRUSTED PATH DESIGN AND
IMPLEMENTATION FOR SECURITY ENHANCED

LINUX

by

Allan T. Hilchie

September 2004

Thesis Advisor: Cynthia E. Irvine
Thesis Co-Advisor: David Shifflett

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A Trusted Path Design and Implementation for
Security Enhanced Linux
6. AUTHOR(S) Allan T. Hilchie

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The threat posed by malicious software and networked adversaries to computers has resulted in the

development of mechanisms to provide assurance that security sensitive information is not being compromised.
One such mechanism is called a Trusted Path. A Trusted Path provides a protected communications channel that
permits the computer to authenticate itself to the user and for the user to authenticate to the system.

This thesis provides a demonstration implementation of a Trusted Path for Security Enhanced Linux
(SELinux) and is used to examine trusted paths, their design and implementation. Additionally, the effectiveness
of a Trusted Path for SELinux is analyzed.

This research is meant to provide a framework that could be used in combination with other efforts to
enhance the security of SELinux.

15. NUMBER OF
PAGES

141

14. SUBJECT TERMS Linux, Security Enhanced Linux, Trusted Path, Secure Attention Key,
Computer Security

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release, distribution is unlimited

A TRUSTED PATH DESIGN AND IMPLEMENTATION FOR SECURITY
ENHANCED LINUX

Allan T. Hilchie
Civilian, Department of the Navy

B.S., Northern Arizona University, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2004

Author: Allan T. Hilchie

Approved by: Cynthia E. Irvine

Thesis Advisor

David Shifflett
Thesis Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The threat posed by malicious software and networked adversaries to computers

has resulted in the development of mechanisms to provide assurance that security

sensitive information is not being compromised. One such mechanism is called a Trusted

Path. A Trusted Path provides a protected communications channel that permits the

computer to authenticate itself to the user and for the user to authenticate to the system.

This thesis provides a demonstration implementation of a Trusted Path for

Security Enhanced Linux (SELinux) and is used to examine trusted paths, their design

and implementation. Additionally, the effectiveness of a Trusted Path for SELinux is

analyzed.

This research is meant to provide a framework that could be used in combination

with other efforts to enhance the security of SELinux.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. HISTORICAL BACKGROUND..1
C. PURPOSE OF STUDY..3

1. Scope and Assumptions ...3
2. Research Objectives...3

II. OVERVIEW OF SECURITY ENHANCED LINUX...5
A. BACKGROUND ..5
B. SELINUX SECURITY OVERVIEW ..7
C. SELINUX SECURITY CONCEPTS ...8

1. Type...8
2. Domain..8
3. Identity ..8
4. Role..9
5. Security Context...9
6. Transition..9

D. SELINUX SECURITY ASSESSMENT...9

III. COMMON CRITERIA TRUSTED PATH REQUIREMENTS11

IV. AN ABSTRACT TRUSTED PATH...15
A. ASSUMPTIONS...15
B. THREATS ..16

1. Sniffing..16
2. Spoofing ..16
3. Denial of Service...16
4. Circumvention of the Trusted Path..17

C. SYSTEM GOALS ..17
D. SUBVERTING THE SYSTEM GOALS ...18
E. DESIGN APPROACHES..19

V. DESIGN REQUIREMENTS FOR THE SECURITY ENHANCED LINUX
TRUSTED PATH ..21
A. COMMON CRITERIA REQUIREMENTS ...21

1. FTP_TRP.1.1 ..21
2. FTP_TRP.1.2 ..21
3. FTP_TRP.1.3 ..21
4. Function Requirement Discussion..22

B. NON-FUNCTIONAL REQUIREMENTS...22
C. REFINING THE FUNCTIONAL REQUIREMENTS22

1. Functional Sub-Requirements Supporting FTP_TRP.1.123
2. Functional Sub-Requirements Supporting FTP_TRP.1.223

 viii

3. Functional Sub-Requirements Supporting FTP_TRP.1.323
4. Additional Functional Sub-Requirements.......................................23

VI. HIGH LEVEL DESIGN FOR THE SECURITY ENHANCED LINUX
TRUSTED PATH ..25
A. DESIGN REQUIREMENT DISCUSSION ...25
B. ARCHITECTURAL REQUIREMENTS ..25

1. Trusted Path Kernel Module (TP_Kern) ..26
2. Trusted Path User Module (TP_User) ...26

C. TRUSTED PATH STATES ..26
1. Stopped..26
2. Awaiting SAK from User ..26
3. Authentication..26
4. In the Trusted Path Menu...27
5. Normal Execution ..27

D. INTERMODULE COMMUNICATION REQUIREMENTS28
1. TP_Kern to TP_User ...28
2. TP_User to TP_Kern ...28

E. TP_KERN MODULE..29
1. Interfaces ..29
2. Databases ..29
3. TP_KERN External Interfaces...30

a. void handle_tp_sak() ...30
b. asmlinkage int sys_trustedpath(int type_msg, int pid))31
c. REGISTER..31
d. SUSPEND ...31
e. RESTORE ...31
f. KILL ..31

F. TP_USER MODULE...31
1. Interfaces ..31
2. Databases ..31

G. SUPPORTING MECHANISMS ..32

VII. TRUSTED PATH IMPLEMENTATION ...33
A. INTRODUCTION..33
B. CONSOLE TERMINOLOGY..33
C. INTERCEPTING OF THE SECURE ATTENTION KEY (SAK)...........34
D. KERNEL MODULE OF THE TRUSTED PATH......................................35
E. CREATION OF A TRUSTED PATH PARENT ID...................................36
F. ADDITION OF A TRUSTED PATH SYSTEM CALL36
G. REPLACEMENT OF THE GETTY AND LOGIN PROCESSES37
H. PROCESS SUSPENSION AND RESTORATION.....................................39
I. CONTROLLING THE TTY ..39

VIII. TRUSTED PATH TEST PROCEDURES...41
A. INTRODUCTION..41
B. FSR 1 ...41

 ix

1. FSR 1 Purpose ..41
2. FSR 1 Testing Rationale..41
3. FSR 1 Test 1..41
4. FSR 1 Test 2..41
5. FSR 1 Test 3..41
6. FSR 1 Test 4..41
7. FSR 1 Test 5..42
8. FSR 1 Test 6..42
9. FSR 1 Test 7..42
10. FSR 1 Test 8..42
11. FSR 1 Test 10..42

B. FSR 2 ...42
1. FSR 2 Purpose ..42
2. FSR 2 Testing Rationale..42
3. FSR 2 Test 1..42
4. FSR 2 Test 2..43
5. FSR 2 Test 3..43

C. FSR 3 ...43
1. FSR 3 Purpose ..43
2. FSR 3 Testing Rationale..43
3. FSR 3 Test...43

D. FSR 4 ...43
1. FSR 4 Purpose ..43
2. FSR 4 Testing Rationale..43
3. FSR 4 Test...43
4. FSR 4 Test 2..43
5. FSR 4 Test 3..44
6. FSR 4 Test 4..44
7. FSR 4 Test 5..44
8. FSR 4 Test 6..44
9. FSR 4 Test 7..44
10. FSR 4 Test 8..44

E. FSR 5 ...44
1. FSR 5 Purpose ..44
2. FSR 5 Testing Rationale..44
3. FSR 5 Test 1..44

F. FSR 6 ...45
1. FSR 6 Purpose ..45
2. FSR 6 Testing Rationale..45
3. FSR 6 Test 1..45
4. FSR 6 Test 2..45

G. FSR 7 ...45
1. FSR 7 Purpose ..45
2. FSR 7 Testing Rationale..45
3. FSR 7 Test 1..45

 x

4. FSR 7 Test 2..45
H. FSR 8 ...45

1. FSR 8 Purpose ..45
2. FSR 8 Testing Rationale..45
3. FSR 8 Test 1..46
4. FSR 8 Test 2..46

I. FSR 9 ...46
1. FSR 9 Purpose ..46
2. FSR 9 Testing Rationale..46
3. FSR 9 Test 1..46

J. FSR 10 ...46
1. FSR 10 Purpose ..46
2. FSR 10 Testing Rationale..46
3. FSR 10 Test 1..47

IX. CONCLUSIONS ..49
A. ANALYSIS AND DISCUSSION ..49

1. The Increasing Complexity of Software ..49
2. Security Enhanced Linux..50
3. Adding Security to Existing Systems..51

B. FUTURE WORK...52

APPENDIX A. TRUSTED PATH –USER SPACE ...53

APPENDIX B. TRUSTED PATH – KERNEL ..75

APPENDIX C. TRUSTED PATH SYSTEM CALL ...83

APPENDIX D. SCHEDULE MODIFICATION..85

APPENDIX E. KEYBOARD DRIVER MODIFICATIONS..95

APPENDIX F. FORK MODIFICATION...99

APPENDIX G. INSTALLATION GUIDE...107

APPENDIX H. SE LINUX POLICY CONFIGURATION...109

LIST OF REFERENCES..119

INITIAL DISTRIBUTION LIST ...123

 xi

LIST OF FIGURES

Figure 1. Trusted Path States...28
Figure 2. Session Grouping by tp_id...30

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation

under Grant No. DUE-0114018.

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OVERVIEW
The widespread incorporation of computing systems into the everyday lives of

average people has led to the realization that computers need to be ‘secure’. There are

numerous news articles which describe computer security concerns as well as the ‘hack’

of the week. Why computers need to be ‘secure’ can be readily described in terms of the

need to protect information. Governments, businesses and individuals rely on

information stored in computers to be correct, safe from eavesdropping and to be readily

accessible. In computer security terms, the user needs assurance that his information

stores support confidentiality, integrity and availability.

The need for computer security is not new but the requirement is increasing as

more information is stored electronically and the number of interconnections between

computer systems increases. As a small part of the general research in computer security

subjects, this project will explore the implementation of a trusted path in Security

Enhanced Linux (SELinux). This version of Linux is part of a National Security Agency

(NSA) research project pursuing architectures for more secure operating systems. The

addition of a trusted path to SELinux would increase the user’s protection from password

sniffing software and is a common security feature in medium and high assurance

operating systems.

B. HISTORICAL BACKGROUND
Following quickly the development of general purpose computing machines,

concerns about computer security arose. Initially the concerns were focused on non-

malicious activities that could affect other computer users or that could cause inadvertant

corruption of the operating system, but it soon became apparent that malicious behavior

could be a threat. In 1970, a Rand report by Ware [1] described some of the potential

computer security threats to the Department of Defense. The Ware report also made

some general recommendations as to approaches to address the issues but it fell short of

providing a concrete general purpose solution to the problems.

 2

A general solution to the computer security problem was proposed in a paper by

Anderson in 1972 [2]. Anderson’s proposal was to create a reference monitor that would

oversee all security related activities on the computer. Specifically, the reference monitor

would ensure that all data accesses were correct in terms of permissions and actions. The

reference monitor is generally accepted as an idealized mechanism to provide security in

a ‘high-assurance’ computer system. Another related concept is the Trusted Computing

Base (TCB). In the National Information Assurance Glossary [3], the TCB is defined as

the

[t]otality of protection mechanisms within a computer system, including
hardware, firmware, and software, the combination responsible for
enforcing a security policy.

The TCB consists of more than an implementation of a reference validation

mechanism and includes such things as identification and authentication, the security

administrator interface, audit retrieval and analysis functions [4].

A potential security problem with computer systems is that it is possible to write a

computer program that can impersonate the login process or other security sensitive

operation. This could allow the capture of a user’s password and ID. This area of

concern was identified as early as 1975 by Saltzer and Schroeder [5]. The idea of

ensuring that a user was talking to the ‘Trusted Computing Base’ was required for some

levels of computer assurance in the ‘Orange’ book [6].

DoD 5200.28-STD: The TCB (“Trusted Computing Base”) shall support a
trusted communication path between itself and user for initial login and
authentication. Communications via this path shall be initiated
exclusively by a user.

This trusted communication path is generally termed a trusted path and is needed

to give the user assurance that he is indeed communicating with the trusted computing

base and not some software spoofing the TCB. Conversely, it also provides assurance

that the operating system is connected to the user. The trusted path is important when the

user identifies himself to the computer through the use of some sort of authentication

process to avoid the malicious capture of the user’s authentication information.

 3

C. PURPOSE OF STUDY

1. Scope and Assumptions
This thesis will assess the requirements for a Trusted Path in Security Enhanced

Linux. The publicly available information about the various Trusted Path

implementations will be reviewed in an attempt to identify significant design

considerations. After reviewing previous work in this area, a design for a Security

Enhanced Linux implementation of a Trusted Path will be proposed and implemented.

2. Research Objectives
The Information Assurance Research Office of the National Security Agency

(NSA) has worked with various research organizations to develop Security Enhanced

Linux [13]. One purpose of NSA’s research is to provide a demonstration project of how

mandatory access controls (MAC) can be used to confine processes to prevent security

issues. The project is also working on developing a security implementation architecture

that is flexible enough to allow for the implementation of various security policies [17].

The research presented in this paper is meant to provide a design document for

Trusted Path implementation using the Security Enhanced Linux as a demonstration

project.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. OVERVIEW OF SECURITY ENHANCED LINUX

A. BACKGROUND
Information assurance is a very active concern of the U.S. government, especially

in the agencies and departments that deal with highly classified information. It seems

reasonable that Top Secret information stored on computers should be protected from

unauthorized disclosure, e.g. protected from computer hacking. The National Security

Agency (NSA) is concerned with systems that are capable of protecting the agency’s

sensitive information. As a result, the NSA conducts research in improving computer

security, and operating system security is an area of particular interest.

One of the current computer security debates is whether “open source” software is

more secure than proprietary software. This discussion pertains to the relative security of

each of the software models. The Linux operating system is the most commonly

identified open source software in these discussions and is identified as open source

because the source code is freely available. Most of the development of Linux is

performed by various volunteers throughout the world. Proponents of open source

believe that the availability of the source code for review by all users improves security.

These users provide a potentially large number of reviewers to identify and correct some

of the potential vulnerabilities. Others believe that the availability of the source code

allows users to modify it to meet their particular security needs. Another potential

advantage for open source software is the ability of the multitude of developers to react

quickly to discovered vulnerabilities by providing software patches.

At the other end of the spectrum is proprietary or closed source code software,

such as the Microsoft operating system. Proponents of these types of products believe

that open source products provide the potential hacker with an advantage in finding

potentially exploitable vulnerabilities. They also cite the responsiveness of the

commercial software industry as a key factor in providing the needed security.

 6

An argument can also be made that by controlling the software from design

through implementation to final delivery gives the commercial software company the

ability to ensure security of the product. While this control of the entire product could

help ensure the security of the system, in practice, it does not appear to function that way.

Many commercial products have had additional software functionality, commonly

referred to as ‘Easter Eggs’, embedded in the product by the implementation team. Some

Easter eggs have included significant amounts of code such as the flight simulator found

in an older version of Excel. Additional information about this and other ‘Easter Eggs’ is

available at the Easter Egg Archive [28]. If the implementers can include an

unauthorized flight simulator what prevents the addition of more malicious functionality

by a member of the team? Witten, et al., [21] provides an excellent discussion of some

aspects of the subject.

Ultimately, open vs. closed source is not particularly relevant to medium or high

assurance software as defined by the U.S. Government. Open and closed are really

economic models that describe how groups generate profit from the software. Assurance

or computer security could potentially be provided under either model. What provides

the needed assurance is the rigor of the development methodology. Without a formal and

methodical approach to the design, implementation, testing, configuration management,

etc., software will continue to have large numbers of bugs, including those that are

security related, regardless of the economic model of the software. Generically,

computer systems that have undergone a formal security design process can be termed

trusted systems because of the assurance provided by the process.

Trusted computer systems have many characteristics that make them distinct from

commonly used systems [2]. The lack of mandatory access controls (MAC) was

identified as functionality absent from most ‘mainstream’ operating systems. As a result,

NSA developed a MAC architecture that could be used for many current operating

systems and flexible enough to allow a wide range of security policies to be applied.

This architecture is known as Flask and Security Enhanced Linux (SELinux) is a research

prototype of the Flask architecture [12].

 7

Flask separates policy from enforcement as a means of increasing the flexibility

of the system. NSA had a generic security policy built by NAI labs to support the

SELinux demonstration project. SELinux provides some support for multilevel security

but the implementation is incomplete at this time and is not used regularly within the

SELinux user group. The selection of Linux as a demonstration platform for Flask was

driven by the open source nature of the ongoing development and the desire to improve

the security of a widely used platform [12].

B. SELINUX SECURITY OVERVIEW
The remainder of this section will address the specifics of the Flask demonstration

implementation and its generic security policy. The following is based on the version of

SELinux for the Linux 2.6 kernel. This kernel adds support for extended security

attributes and made significant changes to the previous SELinux implementations.

SELinux can be viewed as having two primary components: a security policy and

the enforcement mechanism. Policy is contained in the security server and enforcement

is performed by object managers.

The security server is responsible for the security policy and for making

determinations about security access. This server is located in the kernel as a subsystem

and provides application program interfaces (API) that the object managers can query for

security determinations. For example, if a user attempts to access a file, the file system

object manager will submit the user credentials and the file attributes to the security

server to determine if the user has the authority to access the file in the manner requested.

The server is also responsible for security of the security policy.

The various object managers enforce the policy decisions of the security server.

Object managers include kernel subsystems such as process management, file system,

and socket IPC. When a process attempts to access an object for the first time, the object

manager contacts the security server with the security contexts. The security server

performs a look up to determine if a specific access is allowed and returns a decision to

the calling object manager. The object managers may cache the decision in an access

vector cache (AVC) in order to speed up recurring accesses. There is a mechanism to

allow revocation of access permissions if the policy changes while an object is open.

 8

This revocation mechanism is described as the most complex aspect of the Flask

architecture in [10] and requires additional communication between the object managers

and the security server to allow updating of policy settings even if an object is open.

C. SELINUX SECURITY CONCEPTS

1. Type
Each object, such as directories, files, and sockets, is assigned a type. An access

matrix is created that contains allowable accesses between types. An access must be

explicitly defined as allowable per the SELinux implementation of principle of least

privilege. There are more than 140 different types in the default SELinux installation and

they are grouped into seven categories:

• Device

• Devpts –pseudo terminal devices

• File

• Network

• Network File System

• Procfs – process context file system

• Security

2. Domain
Each process runs in a domain. The domain controls what the process can access.

It is very much like the idea of types for objects and is stored in the same data structure as

the types. There are in excess of 160 domains in a default install of SELinux including

admin, user, auth-net, fcron, kernel, startx, and more than 150 various program domains.

3. Identity
Each user has a SELinux identity in addition to a standard Linux user ID. This

can be confusing because the identity and ID are typically the same name. Normal

commands that can change a Linux ID, e.g. su, do not change the SELinux identity.

Example:

Root performs an id command
root@localhost selinux]# id
uid=0(root) gid=0(root) groups=0(root), 1(bin), 2(daemon),
3(sys), 4(adm), 6(disk), 10(wheel)
context=root:sysadm_r:sysadm_t

 9

Root su’s to ahilchie
[root@localhost selinux]# su - ahilchie

Root performs an id command as ahilchie
[ahilchie@localhost ahilchie]$ id
uid=500(ahilchie) gid=500(ahilchie) groups=500(ahilchie)
context=root:sysadm_r:sysadm_t

In the example above the uid, gid, and groups are the Linux identity while the

context is SELinux identity information.

4. Role
A role is a collection of domains that some grouping of users can enter.

Currently, the domains that a particular user can enter are identified in various

configuration files.

5. Security Context
A security context consists of an identity, a role and a domain or type.

Example contexts:

identity:role:domain or type

Init process system_u:system_r:kernel_t

Root root:sysadm_r:sysadm_t

User ahilchie: user_r:user_t

6. Transition
Transition decisions are made to determine the correct security context for a

particular operation. As an example, if a user (ahilchie) creates a new file in his home

directory, it will have a security context of ahilchie:object_r:user_home_t but the same

file in the /tmp directory would be ahilchie:object_r:user_tmp_t.

D. SELINUX SECURITY ASSESSMENT
SELinux is not a high assurance system. It is Linux with additional security

policies. There has been no attempt to correct any deficiencies in the underlying

operating system. As noted on the NSA SELinux web page:

 10

This work is not intended as a complete security solution for Linux.
Security-enhanced Linux is not an attempt to correct any flaws that may
currently exist in Linux. Instead, it is simply an example of how
mandatory access controls that can confine the actions of any process,
including a superuser process, can be added into Linux. The focus of this
work has not been on system assurance or other security features such as
security auditing, although these elements are also important for a secure
system. [17]

Security system subversion remains a very real possibility. It would be possible

to create a program and add it to a Linux distribution. Properly coded, the added program

could provide any desirable level of access to the system. As an example of the potential,

consider Karger and Schell’s suggestion of a compiler trapdoor [20] which was

elaborated by Ken Thompson in his discussion of UNIX system security [15]. For a

discussion of the threat of subversion see Anderson, et al [19]. The inclusion of

programs in the Linux source tree is not tightly controlled nor are the programs

rigorously examined (in a formal methods manner) prior to being added.

A more simplistic attack vector would be to use some current exploit against the

Linux kernel. These exploits are uncovered regularly and, depending on the properties of

the exploit, might allow a malicious user to subvert the SELinux MAC policy and take

control of the system.

Security Enhanced Linux is a fairly complex overlay to the Linux operating

system and contains in excess of 350 configuration files. The Linux system is also a

complex system. Complexity is a serious challenge to security for a number of reasons

[2]. This complexity presents very real challenges to administration of the system.

 11

III. COMMON CRITERIA TRUSTED PATH REQUIREMENTS

Traditionally, trusted computing systems have been predominately used by

governmental organizations1. This chapter will look at the U.S. Government

requirements for a trusted path in these types of systems. This review of governmental

standards will provide a framework for the demonstration implementation of the Security

Enhanced Linux trusted path. There has been considerable effort made by many people

to identify and codify various aspects of assurance that can be leveraged in this project.

The U.S. Government and many other nations have adopted the Common Criteria

as the security standard for computing systems. The Common Criteria identifies a

Security Functional requirement class, ‘FTP: Trusted Path/channels’ [7]. The Trusted

Path class identifies several requirements for a trusted path including:

Trusted path requires that a trusted path between the TSF2 and a user be
provided for a set of events defined by a PP/ST author. The user and/or the
TSF may have the ability to initiate the trusted path.

The TSF shall provide a communication path between itself and local
users that is logically distinct from other communication paths and
provides assured identification of its end points and protection of the
communicated data from modification or disclosure.

The TSF shall require the use of the trusted path for initial user
authentication.

In other words, the trusted path must be an unforgeable communication

mechanism between the user and the TCB. Once the user initiates the trusted path, he

can be certain that the TCB has taken control and as long as the user remains in the

trusted path, then, there is confidence that any software trying to spoof the TCB is

thwarted.

1 Evaluated systems have been predominately used by governments; it could be effectively argued that
commercial enterprises should have a significant interest in these systems as well. For the government, the
compromise of sensitive information could have dire consequences. The same argument is applicable for
businesses. The compromise of some types of sensitive business information could even result in the
complete failure of the business.

2 Target of Evaluation Security Functions – Parts of the system that have to be relied upon for
enforcing security policies

 12

The Common Criteria allows for the TSF to initiate a trusted path. This capability

on the part of the TSF would either degrade the level of security and/or significantly

increase the complexity of the TCB. Typically the trusted path is entered into by the

system reacting to some user action. The TCB reacts to the user input and provides

assurance that the communications between the user and the TCB are protected. If the

system is allowed to initiate a trusted path, the user would be unable to determine if the

communications path is to the TCB or to a spoofing program. This implies that the TCB

would have the responsibility to prevent any system output that appears to be a trusted

path. While this may be possible, it would increase the complexity of the TCB’s

responsibilities with regard to system output and therefore, reduce the system security.

The National Information Assurance Partnership (NIAP) is an affiliation between

the NSA and Common Criteria Vendors. NIAP maintains a Public Interpretations

Database [8] of determinations made by the Interpretation Board. These are meant to

provide additional details of the security requirements required under the Common

Criteria. The NIAP Interpretation I-0191: Minimum Set Of Actions That Require Trusted

Path identifies the following required functions:

Authentication.

Session establishment where identification is provided.

Requests to change the subject sensitivity label.

Requests to display the current subject's complete sensitivity label.

Requests to assume a security administrative role.

This list identifies a set of actions which if implemented by the operating system

must use the trusted path mechanism. The common thread in the listed items is that they

have some security sensitive function. In the case of authentication, the user is providing

some sensitive user identifying information (typically a password) that must be protected

from entities outside of the TCB. Performing security sensitive actions on a system also

requires that the administrator ensure that he is dealing with the TCB prior to issuing

security relevant commands.

 13

The sensitivity label requirements are for multilevel systems. These are computer

systems that are used to process information at different levels of sensitivity and where

there is a requirement to prevent information ‘leakage’ between different sensitivity

levels. A concrete example of a multilevel secure system would be a single computer

where both Top Secret and Secret information is processed. It is important to ensure that

no Top Secret information can be accessed by a non-Top Secret process. If some

software at the Secret level was able to spoof being a Top Secret process, it is possible

that information could be compromised. The trusted path provides the authorized user

with the ability to select the appropriate level for a session.

Another aspect of the Common Criteria framework are protection profiles. A

protection profile is essentially a high level, abstract statement of system security

requirements. An organization, such as a government, could create a protection profile,

thus stating its security requirements. In this situation a user might be a specific

government agency with specific requirements for security. This agency would then

develop a protection profile that identifies all of its security requirements. Vendors

would then be able to develop products that meet the protection profile requirements. For

this project, there is no protection profile identified so we assume that the desire is to

have a medium assurance system and design the trusted path to meet an evaluated

assurance level 4 (EAL4) requirements.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

IV. AN ABSTRACT TRUSTED PATH

The previous chapter defines the basic requirements of a trusted path. The

primary requirement was that the trusted path must provide an unforgeable

communication path between the user and the trusted system. This path is invoked by the

user and must be evoked under certain conditions.

Open source documentation of trusted path design is limited in availability,

therefore, this section will attempt to explore the design considerations for an abstract

trusted path. “Abstract” is used to mean that the trusted path design considerations are

removed from the actual details of the operating system and the computer hardware.

A. ASSUMPTIONS
This abstract trusted path will be confined to analysis of the trusted path as a local

problem, i.e., the users will be at the system’s local terminal. This paper will not address

the more complex issue of a network trusted path. This project will also focus on a single

user system in a single level security environment. In the design, we will attempt to

allow the basic structure to be extendable to multi-user multilevel environments but these

features are not part of the project.

It is assumed that the security policy requires that each user must authenticate to

the system through the trusted path for each and every computer session.

A trusted computing base (TCB) is assumed to exist and is not corruptible. The

evaluation assurance level of the TCB must be commensurate with that of the trusted path

and vice versa. An implementation of a trusted path might be likened to installing very

secure external doors in a house. These external doors might be impregnable but the

security of the house is also dependent upon preventing unauthorized access from

windows, walls, etc., as well. The addition of a trusted path to Security Enhanced Linux

will not correct any potential pre-existing vulnerabilities in this operating system.

 16

B. THREATS
Any security relevant design should be based on a ‘threat model’. This means

that potential threats to correct functioning should be identified in order to develop

strategies to counter those threats. A human metaphor will be used to develop the

potential threats.

Alice (our user) has a secret (her password) that she wants to give Bob (our TCB).

Crafty Hacker is the enemy and he wants to steal Alice’s secret or, in some cases, keep

Bob from getting it. Alice knows Bob and so her trusted path is achieved by the physical

recognition of Bob. How can Crafty accomplish his goals?

He could lurk around the corner and eavesdrop on the conversation.

He could pretend to be Bob (perhaps he is a master makeup artist).

If these two approaches fail, he could then prevent Alice and Bob from meeting in

a secure manner (standing between them)?

In the computer security parlance:

1. Sniffing
Essentially this is eavesdropping on the conversation. In our trusted path scenario

this would require modifying some of the software used for the trusted path to allow

redirection of the data.

2. Spoofing
This is impersonating some portion of the trusted path or TCB to allow capture of

the sensitive data. Spoofing the logon process with a fake logon screen that accepts the

user logon information, throws an error, and then starts the real logon process would be

the classic example. A more sophisticated approach would be a man-in-the-middle attack

where the spoofing software pretends to be the user to the TCB and the TCB to the user.

3. Denial of Service
DOS is the preventing of transmission of information. A process could be created

with the purpose of preventing valid users or the TCB from accessing the trusted path.

 17

4. Circumvention of the Trusted Path
There exists one other threat to our trusted path: circumvention of the trusted path.

This circumvention is described as system subversion and is defined as ‘… the covert and

methodical undermining of internal and external controls over a system lifetime to allow

unauthorized or undetected access to system resources and/or information.’ [18] The

extent of the subversion threat is discussed in Anderson et al 2004 [19]. The subversion

problem could be exemplified by a backdoor being installed in the system in order to

avoid having to use the trusted path.

The high level system goals will be presented and then the methodology to

prevent the threats will be developed.

C. SYSTEM GOALS
A user needs assurance that he is communicating with the trusted computing base

prior to performing security sensitive operations. Examples of security sensitive

operations include authentication, changing passwords and performing some

administrative actions. The special case of authenticating to the trusted computer base

will always occur at the beginning of a session and precedes other trusted path

operations. Security sensitive operations will occur after the user is authenticated and

while in the trusted path. Also, we may want to support authentication as a different role

during an established session, e.g., su to root in the Unix sense.

How does the user invoke the trusted path? Any input methodology could

potentially be made to work. This could be as simple as a keystroke combination or as

complex as the use of a smart card inserted into a system card reader. Many current

computer systems use either a keystroke combination, the mouse position or a click on

the screen. Examples of the keystroke approach are found in the XTS 400 system [23] or

the Windows 2000 operating system [24]. Trusted Solaris systems use the position of the

mouse [25]. It would even be reasonable to have a separate button on the computer to

invoke the trusted path. Generically the method to invoke a trusted path is referred to as

a secure attention key (SAK).

 18

How does the user know that the trusted path is in effect? Once again there is a

range of potential ways to inform the user that the trusted path is in effect. The only real

limit on this is the output capability of modern computers. Approaches could include

some special LED on the computer or computer monitor that would only be on if the

trusted path was in effect. Trusted Solaris has a special area on the screen that can not be

affected by non-TCB processes. A simple approach is to guarantee that pressing the

SAK always invokes the trusted path. This appears to be the approach used by the XTS

400 and in the Windows NT family. The TCB must be able to protect the SAK

invocation; in other words, once the SAK is initiated, no process should be able to

prevent that signal from reaching the TCB. This will prevent some process from

intercepting the SAK and presenting a spoofed trusted path.

Once the trusted path is invoked, the input and output from the trusted path must

be protected from any and all other un-trusted processes. Conceptually this could be

achieved by approaches such as terminating or suspending any running un-trusted

process. Another approach would be to create a separate and isolated process for use by

the trusted path; the major concern in this approach would be to prevent the other

processes from gaining access to the terminal.

D. SUBVERTING THE SYSTEM GOALS
Sniffing and spoofing threats can be avoided by careful design. Toward that end,

there are two design facets that need to be addressed. First, that the SAK must always be

controlled by the TCB and second, the TCB must block any input and output from

untrusted software while the trusted path is in effect. The combination of these two

design facets will prevent both sniffing and spoofing of the trusted path communication.

Preventing denial of service (DOS) is more difficult because the problem is larger

than the trusted path. There is no way for the trusted path to prevent the majority of DOS

attacks. A type of attack that the trusted path would be unable to prevent is unplugging

the computer. In terms of the trusted path, what types of DOS attacks should be

prevented? Any set of non-TCB processes should not be able to prevent a user from

invoking the trusted path. This may be achievable within the TCB and requires that the

 19

TCB process keyboard interrupts correctly. If the TCB can guarantee that the SAK

generates an interrupt, which can be used to start the trusted path, then the problem is

adequately solved. This does not solve all potential denial of service issues.

The last threat is the circumvention issue. This project will not attempt to address

all manner of system subversion. Only a high assurance system, such as those

constructed to meet EAL 6 and EAL 7 criteria, can provide any confidence that the

system has not been subverted

E. DESIGN APPROACHES
A primary design goal is simplicity. Saltzer and Schroeder identified complexity

as a major security issue in their seminal work in 1975 [5]. This implementation will

attempt to minimize complexity unless doing so will reduce security. Most of the high

level design decisions are made based on this goal. These include:

• The trusted path shall be activated by a keystroke combination (SAK).

• Pressing the SAK shall always invoke the trusted path.

• The software implementation of the trusted path should be as small as
possible.

• The trusted path mechanism will be as simple as possible. For example,
the trusted path will not use a ‘windows style’ graphical display due to the
large amount of code that would have to be trusted.

• The other running processes will be isolated from the trusted path to
prevent them from being able to communicate with the trusted path,
keyboard or the computer monitor.

• The authentication mechanism shall only accept input from the trusted
path.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

V. DESIGN REQUIREMENTS FOR THE SECURITY
ENHANCED LINUX TRUSTED PATH

The Common Criteria defines three functional requirements for a medium

assurance trusted path. The preceding abstract trusted path discussion identified some

additional design goals. This chapter will present the specific design requirements that

were used in this project to design the SELinux trusted path.

A. COMMON CRITERIA REQUIREMENTS
The Common Criteria Security functional requirements document [22] provides a

template that allows system designers to select from various phrases to build a Common

Criteria protection profile. As an example, the following is the first Common Criteria

requirement for a trusted path:

FTP_TRP.1.1 The TSF shall provide a communication path between itself
and [selection:remote, local] users that is logically distinct from other
communication paths and provides assured identification of its end points
and protection of the communicated data from modification or disclosure.

Based on the requirements for this demonstration implementation the ‘local’

phrase is selected to generate the following statement. Similarly the two other Common

Criteria trusted path requirements are chosen to create our protection profile statements:

1. FTP_TRP.1.1
The TSF shall provide a communication path between itself and local users that is

logically distinct from other communication paths and provides assured identification of

its end points and protection of the communicated data from modification or disclosure.

2. FTP_TRP.1.2
For FTP 1.2 the selection was: The TSF shall permit local users to initiate

communication via the trusted path.

3. FTP_TRP.1.3
For FTP 1.3 the selection was: The TSF shall require the use of the trusted path

for initial user authentication.

 22

4. Function Requirement Discussion
FTP_TRP.1.1 really defines a trusted path. The requirement states that the trusted

path must provide an unforgeable communications link between the user and the trusted

portion of the operating system. The trusted path must also ensure that, once established,

any information passed between the user and the TSF must be protected from

modification and disclosure.

FTP_TRP.1.2 requires that a user must be able to invoke the trusted path.

FTP_TRP.1.3 states that initial user authentication shall be conducted using the

trusted path.

B. NON-FUNCTIONAL REQUIREMENTS
In addition to the functional requirements there are guiding design principles that

are important to designing security features. Primarily these principles include

simplicity, modularity and appropriate layering of the design.

Simplicity is a very important design consideration which enhances the

understandability of the code. Increasing complexity increases the probability that

serious design flaws will exist and decreases the chance that these flaws will be

discovered during design review. Additionally, increased complexity leads to an increase

in the likelihood of implementation mistakes.

Modularity and layering are related to simplicity in terms of design. Designing

the modules and layers to group similar or related behavior enhance the understandability

of the design. Placing functionality at the appropriate layer provides the same benefit.

C. REFINING THE FUNCTIONAL REQUIREMENTS
The SELinux trusted path has three functional requirements plus several non-

functional requirements. Based on the proposed design, this section defines how this

implementation meets the common criteria functional requirements for a trusted path

using functional supporting requirements (FSR). These supporting requirements are

simply the elements that this design needs to be able to meet the common criteria

requirements.

 23

1. Functional Sub-Requirements Supporting FTP_TRP.1.1
FSR 1 – The TSF provides a trusted path menu to allow the user to select the

appropriate action to be performed.

FSR 2 – The TSF suspends all non-trusted path user processes associated with the

user upon entering the trusted path.

FSR 3 – The communication path between the keyboard or computer monitor and

the TSF shall be under control of the TSF while the trusted path is active.

2. Functional Sub-Requirements Supporting FTP_TRP.1.2
FSR 4 – The TSF is always notified of the secure attention key (SAK) signal.

3. Functional Sub-Requirements Supporting FTP_TRP.1.3
FSR 5 – User authentication is controlled via the trusted path.

FSR 6 – Pressing the SAK when there is no authenticated user results in the TSF

initiating an authentication sequence.

FSR 7 – Failed authentication results in returning to the initial pre-authentication

state.

FSR 8 – Successful authentication results in the display of the trusted path menu.

4. Additional Functional Sub-Requirements
The following two sub-requirements are necessary to provide appropriate

functionality to the SELinux trusted path.

FSR 9 – Selecting run from the trusted path menu restores any previously

suspended user processes or causes a new shell process to be spawned.

FSR 10 – Selecting exit from the trusted path menu terminates any user processes

and returns the computer to the pre-authentication state.

These 10 functional supporting requirements are sufficient to meet the Common

Criteria functional requirements, and support some additional desirable functionality as

well.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

VI. HIGH LEVEL DESIGN FOR THE SECURITY ENHANCED
LINUX TRUSTED PATH

Previous chapters discussed functional requirements for the implementation of a

trusted path. This chapter will begin with a discussion of some of the key requirements

for the trusted path design. These requirements will result in architectural requirements

for the design. The trusted path as a state machine will also be introduced. The final

section of this chapter presents a set trusted path interfaces to be implemented in order to

meet the functional requirements.

A. DESIGN REQUIREMENT DISCUSSION
To prevent some untrusted process from blocking the TCB from receiving the

SAK the keyboard scancode should be captured at a low level within the system. This

capture should occur inside of the kernel. By keeping the SAK processing in the kernel

we can prevent user space processes from affecting the SAK.

Blocking any input/output by untrusted processes while in the trusted path can be

accomplished in a number of ways including destroying or suspending any running

untrusted processes. Another approach is to isolate the terminal so that only the trusted

path can access it. This thesis will suspend user processes to prevent potential spoofing

or sniffing.

Ensuring that the authentication process only receives input from the TCB can be

accomplished by modifying the traditional getty and login processes. Both getty and the

login processes currently run in user space.

B. ARCHITECTURAL REQUIREMENTS
The design requirements call for processing in both the kernel and in user space.

This drives us toward two separate code modules. One module will be part of the kernel

and will be responsible for kernel-related trusted path processing. The other module will

be in user space. The functions performed by each module are listed as follows.

 26

1. Trusted Path Kernel Module (TP_Kern)

• Catch the SAK

• Suspend user processes

• Restore user processes

2. Trusted Path User Module (TP_User)

• Maintain trusted path state

• React to TP_Kern SAK pressed message

• Control the TTY

• Display initial press SAK message

• Display TP menu

• React to input from TP menu

• Control user authentication

• Start a command shell

• Initialize TTY

C. TRUSTED PATH STATES
From the perspective of a trusted path we can view the computer as a state

machine with several distinct states.

1. Stopped
In the stopped state the system is powered down and unavailable for interaction.

It will transition to the next state as a result of the boot process. In and of itself this state

is not interesting in the context of the trusted path.

2. Awaiting SAK from User
In the no_user state there are no user processes running on the machine but all of

the necessary boot processes have run. The computer is waiting for a user to begin an

authentication process. This state will be entered after the system boot process is

complete. This state is also entered when a user selects exit to end his session with the

computer or when a user incorrectly authenticates.

3. Authentication
In the in_auth state, the user is proving his identity to the TCB. There are several

distinct steps to the authentication but from the perspective of the trusted path it may be

 27

viewed as a single state. Successful completion of the authentication process results in

moving to the trusted path menu. Unsuccessful completion results in returning to the

no_user state.

4. In the Trusted Path Menu
In the in_TP_menu state the user has been authenticated and the trusted path is

awaiting user input on his desired action. All user processes are suspended. There are

two entry points; this state can be reached by successful completion of the authentication

process or by pressing the SAK during the normal execution state. There are also two

exit points, the user may exit the trusted path menu to the user_run state or to the no_user

state. While in the in_TP_menu state, the user is authenticated to the system and the

trusted path menu is displayed. The trusted path has control of the computer monitor and

keyboard.

5. Normal Execution
The user_run state is the condition in which users may run applications and

processes. The user is authenticated to the system and the trusted path is idle.

Figure 1 presents a pictorial representation of the trusted path states and the

transitions between the states.

 28

Figure 1. Trusted Path States

D. INTERMODULE COMMUNICATION REQUIREMENTS

1. TP_Kern to TP_User
Notify Trusted Path User Module that the SAK has been pressed

2. TP_User to TP_Kern
Four distinct messages must be sent from the user space trusted path module

(UTPM) to the kernel trusted path module (KTPM):

• Register the process ID (PID) of the UTPM with the KTPM. With this
information the KTPM can ensure that only the UTPM is making calls to
the KTPM. It also will allow the KTPM to signal the UTPM.

• Suspend the processes associated with a particular trusted path ID
(TP_ID). The TP_ID is the PID of the first user process in the parentage
tree of the any given user process.

 29

• Restore the processes associated with a TP_ID. This is used to restore any
previously running processes on returning to a running state from the
trusted path menu.

• Kill the processes associated with a TP_ID. This is used to destroy any
user processes when the user exits the system.

E. TP_KERN MODULE
TP_Kern is the kernel space grouping of functionality for the trusted path. It is

coded in the trustedpath.c as well as the trustedpath.h files.

1. Interfaces

void handle_tp_sak ()
asmlinkage int sys_trustedpath(int type_msg, int pid)

The interface was named with a handle prefix because this naming convention is

commonly used in the Linux kernel development community.

2. Databases
An integer variable, labeled tp_id for trusted path ID, was created in the kernel

schedule header file. This variable is used by the fork process to label each process with

its original parent process ID. In this context, original parent is used to describe the first

shell process. The init process is the only user space process started by the kernel and

can be considered the original process in any process tree. The tp_id captures the session

level after tp_getty and allows the trusted path to determine which processes are

associated with a user session. The tp_id is used to suspend or terminate specific session

processes as needed. Detailed information about these modifications are presented in

Appendix D, Schedule Header Modification, and Appendix F, Fork Modification. Figure

2 presents a graphic representation of process hierarchy. The tp_id is associated with

each session and is derived from the PID of the original shell for each session.

 30

Init
PID 1
tp_id 1

Tp_getty2
PID Y
tp_id Y

Tp_getty3
PID Z
tp_id Z

Tp_getty1
PID X
tp_id X

Session 2
PID XY
tp_id XY

Session 3
PID XZ
tp_id XZ

Session 1
PID XX
tp_id XX

Session 1
Process 1
tp_id XX

Session 1
Process 2
tp_id XX

Session
Figure 2. Session Grouping by tp_id.

3. TP_KERN External Interfaces
The following functions are implemented inside of the trusted path kernel module.

a. void handle_tp_sak()
Called by the keyboard driver in response to simultaneous pressing of the

control and break keys. TP_Kern responds to the SAK by notifying the trusted path user

space module with a signal.

 31

b. asmlinkage int sys_trustedpath(int type_msg, int pid))
This trusted path system call is the user space interface that is used by

TP_User to send information to the TP_Kern. This function returns a zero on successful

completion. There are four messages that were identified as being necessary:

c. REGISTER
Called by the trusted path user module on initialization to pass the trusted

path process ID to the TP_Kern. This information is stored in a kernel variable. This

variable is used to allow the TP_Kern to signal the trusted path process.

d. SUSPEND
Called by TP_User to suspend all processes with the same tp_id as the

PID that was passed to the function. This is done by suspending each process with a

tp_id that is equal to the tp_id of the passed in PID. The processes are suspended by

removing them from the run queue of the kernel’s scheduling process.

e. RESTORE
Called by TP_User to restore all processes with the same tp_id as the PID.

This is done by determining the tp_id of the PID. Then each process with this tp_id is

restored by moving the process on the run queue of the kernel.

f. KILL
Called by TP_User in response to the user ending a session. TP_kern will

then enumerate all the processes associated with the PID’s tp_id and then issue a

force_sig(SIGKILL,pid) to each associated PID as defined in signal.c.

F. TP_USER MODULE
The TP_User module is the user space grouping of functions for the trusted path.

It is coded in the login.c file which is used to create the tp_getty executable file.

1. Interfaces

There are no external interfaces in the traditional sense. The only external input is

notification of a SAK from the kernel. This is handled by use of a signal handler in the

tp_getty executable.

2. Databases
The primary databases to support the trusted path implementation are a state

variable and session structure.

 32

The trusted path state variable is labeled tp_state and there are four valid states

identified. These are the same states as identified earlier in this section with the

exception of the stopped state which is not used. The states are:

NO_USER
IN_AUTH
IN_TP_MENU
USER_RUN

As a user transitions from one state to the next this variable is updated and is used

by the tp_getty program to determine the appropriate response to user input.

The session structure maintains information about the user’s open sessions.

struct session_struct {
 session_tty
 session_pid
 session_fd
} sessions

The session_structure is used to capture TTY, PID, and the TTY file descriptor of

each session. This information is used to suspend, restore and terminate all the processes

associated with a particular user session.

G. SUPPORTING MECHANISMS
The keyboard driver was modified to capture the simultaneous pressing of the

control and break keys. This action causes the handle_tp_sak function to be called in the

kernel. The keyboard driver modification is described in Appendix E.

The SE Linux initialization process init is modified to start TP_User. No standard

getty is started. This modification occurs in the inittab file.

 33

VII. TRUSTED PATH IMPLEMENTATION

A. INTRODUCTION
The details of the Security Enhanced Linux trusted path implementation are

described at a high level in this chapter. Additional implementation details are described

in appendices as noted.

B. CONSOLE TERMINOLOGY
The term console is used in the context of computers with different meanings.

Zimmer [26] discusses the origins and history of the term console. According to Zimmer

there are at least four meanings of console:

• An instrument panel connected to a computer,

• A display/keyboard unit,

• A display/keyboard unit with additional instrumentation used to monitor
system status,

• A display mode for a monitor device.

Additionally, the terms TTY and terminal are commonly used to describe a

confined display and keyboard unit. Multiple terminals connected to a single computer

used to be the common operating mode. In the early days of computers, these terminals

were teletype machines which resulted in the abbreviation of TTY for a terminal.

With the advent of modern desktop computing, the virtual console was developed.

Here a single computer and the associated display/keyboard unit have the ability to

emulate multiple terminals. For example, in Linux it is common to have multiple virtual

consoles that are displayed on a single monitor and which can be toggled between by

special keystrokes. Each virtual console can have a different user logged in and may

perform different functions.

To further confuse the issue, there is the concept of a terminal window. This is a

software program that emulates a terminal inside of a graphic user interface such as X

Windows.

For the sake of this paper the following definitions of terminal related terms will

be used.

 34

Console will be reserved for the special case where the primary function of a

keyboard/monitor is the administration and/or security of one or more systems.

TTY will be used to refer to the logical virtual console. This choice is driven by

the TTY construct in Linux, for example, the command tty will return the virtual console

that the command was entered on.

Terminal will be reserved for a physically separate keyboard/monitor that is

attached to a computer. In the common desktop computer environment there will only be

one terminal per system.

The phrase terminal window will describe a terminal emulator inside of a

graphical user interface. An example of a terminal window is a program like gnome-

terminal that provides a TTY-like environment as a window inside an X Windows

session.

The phrase computer monitor will be used to describe the physical display device,

e.g., computer CRT or flat panel display unit. The phrase was selected primarily to avoid

confusion with the phrase reference monitor which is discussed in previous chapters.

C. INTERCEPTING OF THE SECURE ATTENTION KEY (SAK)
Securely intercepting the SAK is critical to providing a trusted path. Once the

SAK is pressed the trusted path must always be invoked. Untrusted software must not be

able to prevent the trusted path from receiving the SAK notification. In order to achieve

this in SELinux, the keyboard driver was modified to notify the kernel module of the

trusted path when the SAK keystrokes are made.

Linux Magic System Request Key is included in current versions of the Linux

kernel and is contained in the sysrq.c file. One of the functions that is provided by the

Magic System Request is a SAK. This implementation of a SAK is very aggressive and

essentially kills all of the processes on the TTY. This was not suitable for our

implementation of a trusted path. Also the Magic System Request did not work at all

within X Windows on the systems used for this research. Some amount of time was spent

 35

attempting to determine the cause of the X Window problem but it was never precisely

identified. Both the aggressive nature of the Magic System Request SAK and the X

Windows issue drove the development of a new SAK

The keyboard generates scan codes that indicate what keys have been pressed or

released. This information is passed through various hardware specific drivers to the

general keyboard driver. All scan codes eventually arrive at the keyboard driver, so this

is a logical point at which to insert the SAK detection functionality. Changing or

modifying any of the software drivers between the physical keyboard and the keyboard

driver requires recompiling and re-installing the kernel which in turn requires root

administrative privileges. Assurance that the SAK cannot be intercepted by malicious

code is provided because the kernel would require modification to permit this.

The source code of the function which contains the SAK interception code is

provided in Appendix E.

D. KERNEL MODULE OF THE TRUSTED PATH
The trusted path kernel module is primarily a helper set of functionality for the

user space trusted path program. This module is a communication channel between the

kernel and the trusted path user space program. In addition, it performs some process

management.

There are two primary communication systems that are used by this module. For

communication from the kernel, signals are used to notify the user space program that a

SAK has arrived. Signals are a primitive form of interprocess communication (IPC) and

are somewhat limited in their capabilities. More sophisticated methods of IPC were not

employed primarily due to the inherent complexity of these methods. This is ultimately

becomes a design choice between simplicity and functionality. For this implementation,

the simplicity of signals was more important than additional functionality offered by

modern IPC methods. The other communication method used in this implementation was

a system call for sending messages from the trusted path user space program to the

kernel. The trusted path system call is described below.

 36

The kernel module also suspends, restores and terminates processes based on

information received by the trusted path system call. The system call provides a process

ID (PID) of the group of processes to be suspended, restored or terminated. Using the

trusted path ID described below, all of the related processes are identified and the

appropriate action is performed by the kernel module.The source code of the trusted path

kernel module is provided in Appendix B.

E. CREATION OF A TRUSTED PATH PARENT ID
In this design all user processes are suspended upon entering the trusted path. A

reliable method to identify all the processes associated with a user is required to

implement this approach. However, Linux allows changing process parentage

information in the process table, task_struct.

To provide the information needed by the trusted path, an additional field was

added to the process table. This field is an integer process ID labeled as tp_id for trusted

path ID. This field is populated during the fork process by the kernel with the tp_id of

parent process unless the grandparent process ID (PID) is 1 in which case the tp_id is the

current process PID. This will result in all processes associated with a user session

having the same tp_id.

The changes to the original Linux source files required for the trusted path parent

ID are detailed in Appendix D, Schedule Modification and F, Fork Modification.

F. ADDITION OF A TRUSTED PATH SYSTEM CALL
The trusted path design consists of two separate groups of code. One group runs

in kernel space and the other is a user space construct. To allow the requisite

communication to occur, there was a need to build a mechanism for the user space trusted

path process to communicate with the kernel. For the sake of simplicity a trusted path

system call was implemented. For a discussion on the benefits and disadvantages of

using system calls see Love [27].

As identified in the previous chapter, there are four distinct messages that the user

space trusted path must be able to send to the kernel:

• Registration of the user space trusted path,

• Suspend user processes,

 37

• Restore user processes, and

• Terminate user processes.

A single system call was designed to allow these four messages be sent to the

kernel trusted path mechanism. Detailed implementation information is contained in

Appendix C.

G. REPLACEMENT OF THE GETTY AND LOGIN PROCESSES
In the standard SE Linux implementation, the init process will start a small

number of getty processes. In the SE Linux version used for this research, the getty

program is named mingetty because it is a minimal version of a getty without some

features found in other getty programs. Mingetty initializes the various TTYs and waits

for a user to enter his username. Mingetty then execs to the login program passing the

username as a variable. Login authenticates the user. Pluggable Authentication Modules

(PAM) are typically used in modern versions of Linux, including the research version of

SE Linux, to perform the authentication.

As discussed in Chapter II, SE Linux uses a security context to limit the behavior

of processes. In addition to the standard Linux user and group identity, the SE Linux

security context has an identity, a role and a domain which must be correctly set prior to

the user having an interactive shell. If PAM is being used as the authentication method

then an additional SE Linux PAM function is used to set the correct security context.

After the user is authenticated and appropriate context is set, login forks a bash shell and

the user gains control of the process.

The trusted path implementation replaces mingetty and login with a trusted path

program titled tp_getty. This approach to the TTY initialization and user authentication

was driven by the state-machine vision of the trusted path described high level design

chapter. The vision of the trusted path required the ability of the trusted path to control

the state changes which required modification of the process. Another advantage of this

process is the reduction in amount of code needed to perform these functions. As an

example, in order to support the various authentication methods that are possible, the

standard login program is in excess of 1400 lines. Tp_getty is approximately 500 lines

shorter.

 38

The init process starts the number of tp_getty processes determined by the system

administrator in the init configuration file, inittab. The tp_getty initializes the ttys and

waits for the user to press the SAK key combination. Once the SAK is pressed tp_getty

is notified via a signal sent by the kernel. Then tp_getty uses PAM to authenticate the

user. Upon successful authentication, the tp_getty displays the trusted path menu for the

user to select the desired action. For this demonstration project the user may select to

quit a session, start a new shell or to restore a shell. The behavior of quitting or restoring

a session is dependent on the number of open shells. If there is only one open shell then

quitting will log the user out of the system otherwise he will be queried as to which shell

should be closed. Restoration of a shell displays similar behavior. The total number of

permissible open shells is limited to an arbitrary MAX_TP_SHELLS.

Starting a new shell forks a new process, the SE Linux context is set for the new

process, and a new tty is generated. The SE Linux context is set on each shell that is

started from the trusted path menu to allow a user to open multiple shells in different

contexts. This is accomplished by using the SE Linux PAM set credentials function

during the fork process. After setting the context, the user is switched to the new tty and

he assumes control of the process. Pressing the SAK key combination while in the user

process causes the user’s processes to be suspended and the user returns to the tty

containing the trusted path menu.

There were many challenges to the tp_getty implementation. One was the

complexity of the Linux login code. To support all the various forms of authentication

such as Kerberos, crypto cards, PAM and shadow files a significant number of #ifdef

statements are included in the code. This is an efficient means of updating or modifying

an existing piece of code, but these additions make it more complex and difficult to

follow.

The most complex challenge was associated with the SE Linux security policy.

SE Linux uses various configuration files to generate policy rules that describe the access

permissions for subjects and objects. This research used the NSA example SE Linux

security policy which contained in excess of 250,000 rules. Determining how to provide

tp_getty with the correct access permissions was time consuming.

 39

In this implementation of the trusted path, the new tp_getty file was given the

context of system_u:object_r:login_exec_t. This security context allows tp_getty to fork

processes, use PAM modules, reset TTYs and perform other typical login tasks. Also the

init domain was modified to allow the init process to automatically change it’s security

domain to login_exec_t thus allowing init to start the tp_getty. The appropriate

configuration files are contained in Appendix H.

H. PROCESS SUSPENSION AND RESTORATION
As part of the design, all user processes must be inactive when the user is

interacting with the trusted path menu. This is to prevent the possibility of a user process

intercepting any communication between the user and the trusted path.

In order to allow a process to be placed in a suspended state, the process must be

removed from the correct run queue which is a data structure that the kernel uses to

manage process scheduling. Two additional suspended queues were created in sched.c to

store the processes that were removed from the run queues. Additionally, the kernel has

the ability to temporarily store inactive processes in other queues which required the

addition of a do_not_activate flag in sched.h. This combination allows the trusted path to

inactivate the user processes. In general, all user processes are suspended prior to

allowing access to the trusted path.

After completion of the user interaction with the trusted path, the user may wish

to restore a session. This situation is somewhat more complicated than the suspend

process because the user may have multiple sessions that are suspended. The user could

have zero, one or more than one open session.

If the user selects restore from the trusted path menu but does not have an open

session a brief error statement is displayed and the user returns to the trusted path menu.

If the user has just one open session then that session is automatically restored.

Otherwise, there are multiple open sessions and the trusted path queries the user to

determine which session to open.

I. CONTROLLING THE TTY

In this implementation, the trusted path menu is displayed on TTY1. As a user

opens new sessions, the session is displayed on next available TTY. In Linux it is

 40

possible for a user to switch between TTYs with certain keystrokes. To prevent the user

from switching between a session TTY and the trusted path menu or vice versa it was

necessary to block the ability of the user to switch between TTYs by locking the switch

functionality. The trusted path controls the active TTY. Trusting the trusted path

The kenel needs to know that the trusted path system calls are indeed coming

from the trusted path menu. Otherwise other software could impersonate the trusted path

with the potential of denial of service problems. The approach used in this research is

simplistic and there is a potential problem. The trusted path menu registers with the

kernel prior to the computer becoming available for user input. The kernel then sets a

flag to indicate that the trusted path is registered and to prohibit other processes from

registering as the trusted path. Once this flag is set it is not possible to reset the trusted

path registration.

The kernel uses this registration to validate that each system call is coming from

the trusted path by comparing the PID of the calling process against the previously

registered PID of the trusted path.

The flaw in this approach is that if the trusted path menu exits due to some error

the init process will restart the trusted path menu program but it will not be able to

register or signal the kernel. The only remedy in this situation is to reboot the computer

system. This is not a robust solution to the problem and requires additional research.

 41

VIII. TRUSTED PATH TEST PROCEDURES

A. INTRODUCTION
These test procedures are designed to demonstrate that the trusted path is correctly

designed and implemented. The testing will demonstrate the correct implementation of

the functional supporting requirements as defined earlier. This chapter describes the test

methodology for each of the 10 functional sub-requirements (FSR). An action may test

more than one FSR, but, for the sake of completeness, the action will be listed under each

FSR that is appropriate.

B. FSR 1

1. FSR 1 Purpose
The TSF will provide a trusted path menu to allow the user to select the

appropriate action to be performed.

2. FSR 1 Testing Rationale
The trusted path menu should always be displayed in three cases. The menu

should display after a user has successfully authenticated. It should display when the

SAK is pressed in trusted path state user_run. It should also display if an incorrect

selection is made from the trusted path menu. The menu should not display at any other

time.

3. FSR 1 Test 1
Correctly authenticate to the system in trusted path state in_auth. The trusted path

menu should display.

4. FSR 1 Test 2
Incorrectly authenticate to the system in trusted path state in_auth. The trusted

path menu should not display.

5. FSR 1 Test 3

Press the SAK while in the trusted path state user_run. The trusted path menu

should display.

6. FSR 1 Test 4
Press various key combinations that are not the SAK while in the trusted path

state user_run. The trusted path menu should not display.

 42

7. FSR 1 Test 5
Press various key combinations that are not the SAK while in the trusted path

state no_user. The trusted path menu should not display.

8. FSR 1 Test 6
Press the SAK while in the trusted path state no_user. The trusted path menu

should not display.

9. FSR 1 Test 7
Press various key combinations that are not the SAK while in the trusted path

state in_TP_menu. The trusted path menu should display.

10. FSR 1 Test 8
Press the SAK while in the trusted path state in_TP_menu. The trusted path menu

should display.

11. FSR 1 Test 10
Press any single key that is not a trusted path menu selection while in the trusted

path state in_TP_menu. The trusted path menu should display.

B. FSR 2

1. FSR 2 Purpose
The TSF will suspend all non-trusted path user processes associated with the user

upon entering the trusted path.

2. FSR 2 Testing Rationale
In order to assure that no other process can imitate the trusted path or intercept

user-TSF communications, all processes associated with the user should be suspended.

This suspension must be complete prior to initiating the trusted path menu. Testing of

process states will require additional code to log process status and the time the status

changes to determine that all of the necessary processes are suspended prior to initiating

the trusted path menu. The test code will execute immediately prior to starting the trusted

path menu. The trusted path process is considered to be a system process.

3. FSR 2 Test 1
Enter the trusted path menu by successfully authenticating in trusted path state

in_auth. The logs should indicate that only system processes are running prior to display

of the menu.

 43

4. FSR 2 Test 2
Enter the trusted path menu by pressing the SAK in trusted path state user_run.

The logs should indicate that only system processes are running prior to display of the

menu.

5. FSR 2 Test 3
Enter the trusted path menu by selecting any incorrect selection from the trusted

path menu in trusted path state in_TP_menu. The logs should indicate that only system

processes are running prior to display of the menu.

C. FSR 3

1. FSR 3 Purpose
The communication path between the keyboard or computer monitor and the TSF

shall be under control of TSF while the trusted path while it is active.

2. FSR 3 Testing Rationale
This functional sub-requirement does not readily support automated testing.

3. FSR 3 Test
Design and code review will be performed by the Thesis advisors. This review

should not reveal any potential communication path vulnerabilities.

D. FSR 4

1. FSR 4 Purpose
The TSF will always be notified of the secure attention key (SAK) signal.

2. FSR 4 Testing Rationale
The TSF must always receive the SAK signal. Some of the following tests will

also be conducted while evaluating different FSRs and are repeated here for the sake of

completeness or because the desired result may be viewed from a different perspective.

3. FSR 4 Test

Press the SAK while in the trusted path state user_run. The trusted path menu

should display.

4. FSR 4 Test 2
Press various key combinations that are not the SAK while in the trusted path

state user_run. The trusted path should not be invoked.

 44

5. FSR 4 Test 3
Press the SAK while in the trusted path state no_user. The trusted path

authentication process should begin.

6. FSR 4 Test 4
Press various key combinations that are not the SAK while in the trusted path

state no_user. The trusted path should not be invoked.

7. FSR 4 Test 5
Press the SAK while in the trusted path state in_auth. The trusted path login

process should restart.

8. FSR 4 Test 6
Press various key combinations that are not the SAK while in the trusted path

state in_auth. The trusted path should not be invoked and depending on the keys pressed

the authentication should fail.

9. FSR 4 Test 7
Press the SAK while in the trusted path state in_TP_menu. The trusted path menu

should continue to be displayed.

10. FSR 4 Test 8
Press various key combinations that are not the SAK while in the trusted path

state in_TP_menu. The trusted path menu should continue to be displayed.

E. FSR 5

1. FSR 5 Purpose
User authentication will be controlled via the trusted path.

2. FSR 5 Testing Rationale
This functional sub-requirement does not readily support automated testing.

3. FSR 5 Test 1
Design and code review will be performed by the Thesis advisors. This review

should indicate that the only entry point to the authentication mechanism is through the

trusted path.

 45

F. FSR 6

1. FSR 6 Purpose
Pressing the SAK when there is no authenticated user will result in the TSF

initiating an authentication sequence.

2. FSR 6 Testing Rationale
These are the same tests as FSR 4 test 3 and FSR 4 test 4.

3. FSR 6 Test 1
Press the SAK while in the trusted path state no_user. The trusted path

authentication process should begin.

4. FSR 6 Test 2
Press various key combinations that are not the SAK while in the trusted path

state no_user. The trusted path should not be invoked.

G. FSR 7

1. FSR 7 Purpose
Failed authentication will result in returning to the initial no_user state.

2. FSR 7 Testing Rationale
Failed authentication will cause the computer to return to the no_user state and

will require the user to begin the process over.

3. FSR 7 Test 1
Incorrectly authenticate to the system in trusted path state in_auth. The message

to press the SAK to begin authentication should be displayed.

4. FSR 7 Test 2
Correctly authenticate to the system in trusted path state in_auth. The trusted path

menu should display.

H. FSR 8

1. FSR 8 Purpose
Successful authentication will result in the trusted path menu being displayed.

2. FSR 8 Testing Rationale
These are the same tests as in FSR 7.

 46

3. FSR 8 Test 1
Incorrectly authenticate to the system in trusted path state in_auth. The message

to press the SAK to begin authentication should be displayed.

4. FSR 8 Test 2
Correctly authenticate to the system in trusted path state in_auth. The trusted path

menu should display.

I. FSR 9

1. FSR 9 Purpose
Selecting run from the trusted path menu will restore any previously suspended

user processes or cause a new shell process to be spawned.

2. FSR 9 Testing Rationale
The trusted path must restore any previously suspended processes upon return to

the trusted path user_run state.

3. FSR 9 Test 1
While in the trusted path user_run state initiate some number of processes.

Perform a process listing and save the output to a file. Press the SAK and when in the

trusted path menu select run to return to the user_run state. Again perform the process

listing and save the output to a different file. Compare the two files and the only

difference should be the process listing command which might have a different process

ID.

J. FSR 10

1. FSR 10 Purpose
Selecting exit from the trusted path menu will terminate any user processes and

cause the state to change to no_user. The TTY will display the pre-authentication

message requesting potential users to press the SAK.

2. FSR 10 Testing Rationale
This will require additional code to generate test results after the user has logged

out. This code will log running processes after completing the user logout.

 47

3. FSR 10 Test 1
From the trusted path menu select exit then log back into the system and proceed

to the trusted path user_run state. Review the logs to ensure that all user processes were

stopped when the no_user state was reached.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

IX. CONCLUSIONS

A. ANALYSIS AND DISCUSSION

1. The Increasing Complexity of Software
As discussed previously in this paper, the complexity of software increases the

likelihood of security relevant issues in the design and implementation. Complexity also

decreases the chance that an individual will be able to discover a particular flaw. With

enough complexity it may not be possible to determine whether a specific piece of code

has a security issue in the larger context of the code it interacts with.

Most software in common usage today is being developed in an incremental

fashion. An example of this is the Microsoft Windows XP operating system. The core

operating system is modified from Windows 2000 which was modified from Windows

NT 4.0. This approach to development is efficient and follows the tenant of code reuse

that is promoted by the software development community but typically results in much

more complex code. This occurs because additional functionality is inserted into the

previous code. This additional code adds features but can significantly increase the

complexity of a group of code and in fact can make it much more difficult to understand

what are the direct results and side-effects of any given code.

It can be argued that this evolutionary process is the only economical approach to

develop large software packages. While this is reasonable, little formal thought is given

to the security implications. As the code becomes more complex, the likelihood of

significant security problems increases. There is a real economic impact of security

issues both in the traditional computer security sense and the more mundane sense of

having to pay system administrators to constantly patch and maintain systems.

Linux is a very complex set of software packages. Most of the core kernel

functions have been incrementally modified by many authors to offer an increasing

number of functions. As an example of this, the scheduling code of the 2.6 kernel is

2,916 lines in contrast to the 849 lines that were in the 1.0.9 kernel. Any particular thread

of execution through the scheduler is understandable but the cumulative effects of all the

 50

code makes it difficult to understand the scheduler behavior in a meaningful and holistic

sense. This is just one example but the remainder of the kernel contains similar

complexity issues. Adding applications software on top of the operating system explodes

the difficulty of understanding the security relevant software interactions.

Security Enhanced Linux (SELinux) is a security overlay on the traditional Linux.

Security-relevant enforcement mechanisms have been added with one goal being

flexibility. The flexibility of the security mechanism significantly increases the

complexity of the software. This complexity is in addition to the complexity of the

underlying operating system. There is a likelihood approaching certainty that significant

security problems exist in this system, though this is not different from other common

operating systems.

The Common Criteria [29] mandates the reduction of complexity as a key factor

in developing assurance:

Design complexity minimisation contributes to the assurance that the code
is understood — the less complex the code in the TSF, the greater the
likelihood that the design of the TSF is comprehensible. Design
complexity minimisation is a key characteristic of a reference validation
mechanism.

The primary purpose of minimizing the complexity of a system is to allow

understanding of how the computer system enforces security relevant policy. To state

that a computer is high assurance demands that the security relevant functions of the

system are understood through the range of potential inputs and the functions will always

behave correctly in terms of the security policy. This is the fundamental idea behind the

reference monitor concept proposed by Anderson [2]. Related to this complexity issue is

the intermingling of security functions with the remainder of the kernel code. With

security functions scattered about in thousands of lines of other code, it becomes very

difficult to understand the behavior of these functions.

2. Security Enhanced Linux
SELinux is an interesting research project. The addition of mandatory access

controls may provide some additional security to the system depending on the SELinux

policy used.

 51

The SELinux example policy that is provided by NSA is a very liberal policy that

seems to be designed to minimize potential problems for the user. By default, SELinux

will deny an action unless that action is specifically allowed in the policy configuration.

This is a correct approach to a secure system but in the provided example policy most

common actions are specifically allowed. In the example policy provided with this

version of SELinux there were in excess of 250,000 rules that permitted actions. In

contrast, a typical firewall or VPN implementation may have 100 rules. This implies that

a great amount of work would be required to modify this rule set correctly for a given

situation.

As long as SELinux is viewed as a research project it has value. It is not high

assurance and would have difficulty in being classified even as medium assurance under

the Common Criteria. It should not be deployed as a solution in situations that require

considerable assurance.

3. Adding Security to Existing Systems
Most of the effort of this project was in understanding the existing

implementation of SELinx and the underlying Linux system. Due to the complexity of

the current implementation and the lack of design documentation it was difficult to

determine how and where to insert pieces of functionality. It was also impossible to

determine the potential effects from other parts of the existing code on the new trusted

path. This results in some doubt as to the security of the trusted path implementation

specifically in terms of potential issues arising from within the kernel. Most of code that

was identified as relevant was examined but that only represents a small fraction of the

code base and issues such as timing problems were not practical to evaluate. At the core

of the issue is that this implementation depends on a tremendous amount of kernel code.

The trusted path requires that the kernel behave correctly. This places a great deal of

trust in unknown code and programmers.

It is axiomatic that adding security to an existing system is much more expensive

than incorporating security from the beginning. This demonstration project demonstrates

the truth of this statement. The effectiveness of adding security to existing software

decreases as the complexity increases. At some point the complexity becomes

 52

unmanageable and regardless of the efforts to add security very little is accomplished

because the existing code base is too large and not understandable with respect to the

added security functionality. This statement is empirically demonstrated by the software

security patch that results in additional security problems.

These observations imply that any common operating systems in use today will

have significant security problems. The code bases of Windows, Linux and Unix are too

large and complex to prevent potential security issues. The original implementation of

these products did not have security as a primary design consideration. If the lives of

DoD personnel depend on the security of data contained in a computer then a high

assurance system is needed and none of the listed operating systems will meet the

requirements.

B. FUTURE WORK
Ensuring that all trusted path system calls are originating from the trusted path

menu requires additional research. The current implementation provides rudimentary

security from processes impersonating the trusted path but may require rebooting of the

computer if the trusted path menu experiences an error. Additionally, the design of the

trusted path identifier, tp_id, is very dependent upon the task structure. Further research

might provide a more robust implementation mechanism for this identifier.

As currently implemented, the trusted path has been subjected to minimal code

review and testing. As a single individual with little oversight it is very possible that this

work contains some errors. An extensive code review and more rigorous testing of the

implementation must be conducted prior to use of this software in a production system.

 53

APPENDIX A. TRUSTED PATH –USER SPACE

This is the source code for the trusted path user space module. It is derived from
a number of sources. This represents the majority of the coding effort for this
demonstration project.

// Trusted path user space program
//
// This program acts as the trusted path
// for selinux
//
// This implementation is part of a
// masters thesis
//
// ahilchie
//
// There are major sections which are derived
// from the standard login.c and mingetty.c used by RedHat
//

#include <sys/param.h>
#include <stdio.h>
#include <ctype.h>
#include <unistd.h>
#include <getopt.h>
#include <memory.h>
#include <time.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/file.h>
#include <termios.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/wait.h>
#include <signal.h>
#include <errno.h>
#include <grp.h>
#include <pwd.h>
#include <utmp.h>
#include <setjmp.h>
#include <stdlib.h>
#include <string.h>
#include <sys/syslog.h>

 54

#include <sys/sysmacros.h>
#include <netdb.h>
#include "pathnames.h"
#include "my_crypt.h"
#include "login.h"
#include "xstrncpy.h"
#include "nls.h"

// additional includes from mingetty
#include <fcntl.h>
#include <stdarg.h>
#include <syslog.h>
#include <sys/utsname.h>
#include <time.h>
#include "userspace.h"

// additional includes for vt
#include <dirent.h>
#include <sys/vt.h>
#include <sys/types.h>

// selinux relevant
#include <selinux/selinux.h>
#include <sys/sysmacros.h>
#include <linux/major.h>
#include <utmp.h>
#include <security/pam_appl.h>
#include <security/pam_misc.h>

// PAM
define PAM_MAX_LOGIN_TRIES 3
define PAM_FAIL_CHECK if (retcode != PAM_SUCCESS) { \
 fprintf(stderr,"\n%s\n",pam_strerror(pamh, retcode)); \
 syslog(LOG_ERR,"%s",pam_strerror(pamh, retcode)); \
 pam_end(pamh, retcode); exit(1); \
 }
define PAM_END { \
 pam_setcred(pamh, PAM_DELETE_CRED); \
 retcode = pam_close_session(pamh,0); \
 pam_end(pamh,retcode); \
}

#include <lastlog.h>
#include "setproctitle.h"

 55

#ifdef USE_TTY_GROUP
define TTY_MODE 0620
#else
define TTY_MODE 0600
#endif

#ifndef MAXPATHLEN
define MAXPATHLEN 1024
#endif

#define VTNAME "/dev/tty%d"
#define TP_VT 1

// State names for the trusted path
#define NO_USER 0 // no authenticated user on system
#define IN_AUTH 1 // user in authentication process
#define IN_TP_MENU 2 // user authenticated and tp in control
#define USER_RUN 3 // user authenticated and tp not in effect

// trusted path state
int tp_state = NO_USER; // by default we start w/o a user

struct passwd *pwd, pwdcopy;

#define MAX_TP_SHELLS 10 // arbitrary max number allow shells
// A simple session struct
struct session_struct {
 int session_tty;
 int session_pid;
 int session_fd; //the tty fd
} sessions[MAX_TP_SHELLS];

int num_open_sessions = 0; // start with no open sessions
int current_session = 0;

// a couple of functions for dealing with the open session array
void add_session(int new_tty, int new_pid, int new_fd);
void delete_session(int session_num);
void print_array(void);

char ** env;
static char *username;
static char *user_dir;
char *hostname;

 56

static char *progname;
static char *mg_tty; //mingetty tty
static pid_t pid;
static int noclear = 0;
static int nohangup = 0;
extern char **environ;

pam_handle_t *pamh = NULL;

int retcode; //return code for pam function

// standard pam conversion function which
// provides a means to pass text to user from pam
struct pam_conv conv = { misc_conv, NULL };

// error loggin function
static void error (const char *fmt, ...);

// mingetty standard tty initialization routine
static void open_tty (void);

// trusted path signal handling routine
void tp_signal_catcher(int the_sig);

// trusted path routine to interact with pam
// returns 0 on successful completion
// any nonzero return indicates failure of the
// the function or pam
int tp_auth(void);

// displays a message to the user to press the SAK
void display_SAK_msg(void);

// The trusted path menu charater catching function
// valid return values are:
// s to start a new session
// q to terminate a session
// r to restore a session
char do_tp_menu(void);

// printf a bunch of endlines to clear the screen
void clear_screen(void);

// printf of the menu choices
void print_tp_menu(void);

 57

// error statement if user failed to select
// a valid menu choice
void print_tp_menu_error(void);

// trusted path function to
// switch to and open a new tty
// start a new shell
// returns zero on successful completion
int tp_open_shell(void);

// trusted path function to switch the
// active tty to int vtno
// returns a zero on successful completion
int switch_vt(int vtno);

// trusted path function to
// allow the user to pick a session to
// terminate or restore
// returns the session number
int get_session_num(void);

// trusted path function to
// terminate a session
// returns a zero on successfull completion
int tp_terminate_session(void);

int main(int argc, char **argv){

 // set the program name for error logging
 progname = argv[0];
 if (!progname)
 progname = "trustedpath";

/* //remove this to set up the initial
 //vt locking to prevent users from switching
 //between ttys prior to initial login

 int tmp_fd;
 tmp_fd = open("/dev/console",O_WRONLY,0);
 ioctl(tmp_fd, VT_LOCKSWITCH, 256);
*/

 // set up the signal structures so we can

 58

 // catch kernel sak msg
 struct sigaction tp_action;
 tp_action.sa_handler = tp_signal_catcher;
 tp_action.sa_flags = 0;

 if (sigaction(SIGUSR1, &tp_action, NULL) == -1) {
 perror("SIGNIT");
 return 1;
 }

 pid = getpid ();
 putenv ("TERM=linux");

 //tty argv is passed in from inittab
 // as is in the form of tty1
 mg_tty = argv[optind];

 if (!mg_tty)
 printf("no tty");

 if (strncmp (mg_tty, "/dev/", 5) == 0)
 mg_tty += 5;

 trustedpath(REGISTER, pid);

 open_tty ();

 // the primary trusted path decision loop
 for (; ;) {

 int my_ret = 0;
 char menu_ret = NULL;

 switch (tp_state) {

 case NO_USER:
 display_SAK_msg();
 pause(); // wait for sak
 tp_state = IN_AUTH; // change state
 break; // break to next state

 case IN_AUTH:
 my_ret = tp_auth(); //authenticate the user

 if(my_ret) // authentication failed

 59

 tp_state = NO_USER;
 else
 tp_state = IN_TP_MENU; //change state

 break; // break to next state

 case IN_TP_MENU:
 menu_ret = do_tp_menu();

 //start a new shell
 if (menu_ret =='s') {

 // check the current shell count
 if(num_open_sessions >=MAX_TP_SHELLS){
 printf("There are too many open shells\n");
 printf("Please close a shell to proceed\n");
 sleep(3);
 }
 else{
 tp_state = USER_RUN;
 tp_open_shell();
 }
 break;
 }

 //quit a session
 else if(menu_ret == 'q') {

 // find out which session to end
 int my_session = 0;
 my_session = get_session_num();

 // if there are no open sessions
 if (!my_session){
 printf("There is no open session\n");
 sleep(5);
 // don't change state eg stay in tp_menu
 }

 else {

 tp_terminate_session(my_session);
 // check if that was the last session
 if(! num_open_sessions){
 tp_state = NO_USER;

 60

 PAM_END;
 }
 }
 break;
 }

 //resume a previous shell
 else if (menu_ret =='r'){
 current_session = get_session_num();
 if(!current_session){ // no open session
 printf("There is no open session to restore\n");
 break;
 }

 // restore the suspended processes
 trustedpath(RESTORE, sessions[current_session-
1].session_pid);
 switch_vt(sessions[current_session-1].session_tty);
 tp_state = USER_RUN;
 }

 break;

 case USER_RUN:
 //wait for a sak
 pause();

 // after pause reactive tp menu
 // suspend user processes
 trustedpath(SUSPEND, sessions[current_session-1].session_pid);

 current_session = 0;

 // switch to trusted path tty
 switch_vt(TP_VT);

 // reset state
 tp_state = IN_TP_MENU;
 break;

 } //end switch
 } //end of endless loop -- can i say that?
}

 61

// Terminates a single user session
int tp_terminate_session(my_session){

 // trusted path kill sys call
 trustedpath(KILL, (int) sessions[my_session-1].session_pid);
 sleep(1);
 // clean up the data structs
 delete_session(my_session);

 // need to close tty
 ioctl(sessions[my_session].session_fd,
 VT_DISALLOCATE, sessions[my_session-1].session_tty);
 ioctl(sessions[my_session].session_fd,
 VT_RELDISP, sessions[my_session-1].session_tty);

 close(sessions[my_session-1].session_fd);

 return 0;
}

// tp_open_shell opens a virtual terminal
// and then creates a shell for the user
// this code is derived from Jon Tomb's open

int tp_open_shell(void){

 // set up the new tty
 struct vt_stat vt;
 int fd = 0;
 int new_pid;
 int vtno = -1;
 char vtname[sizeof VTNAME + 2];

 // we don't have a tty selected
 if (vtno == -1) {

 // get a 'console' fd to query vt database
 if ((fd = open("/dev/console",O_WRONLY,0)) < 0) {
 perror("Failed to open /dev/console\n");
 return(2);
 }

 // grab the next available vt
 if ((ioctl(fd, VT_OPENQRY, &vtno) < 0) || (vtno == -1)) {

 62

 perror("Cannot find a free VT\n");
 close(fd);
 return(3);
 }

 // get a handle to the vt state struct
 if (ioctl(fd, VT_GETSTATE, &vt) < 0) {
 perror("can't get VTstate\n");
 close(fd);
 return(4);
 }

 // unlock the vt switching functionality

 if (ioctl(fd, VT_UNLOCKSWITCH, 256) < 0) {
 perror("Unable to unlock VT\n");
 close(fd);
 return(5);
 }
 }

 sprintf(vtname, VTNAME, vtno);

 char my_tty[sizeof VTNAME +2];
 sprintf(my_tty, "tty%d", vtno);

 // fork a new process to use for the
 // user terminal
 if((new_pid=fork()) == 0) {
 /* leave current vt */
 signal(SIGINT, SIG_DFL);

 // finish pam initialization
 // This will call the selinux pam module
 // which will set the context for the session
 retcode = pam_set_item(pamh, PAM_RHOST, hostname);
 retcode = pam_set_item(pamh, PAM_TTY, my_tty);

 retcode = pam_open_session(pamh, 0);
 PAM_FAIL_CHECK;

 retcode = pam_setcred(pamh, PAM_ESTABLISH_CRED);
 PAM_FAIL_CHECK;

 //close the password database

 63

 endpwent();

 //set the group id with the user's gid
 setgid(pwd->pw_gid);

 // if the user doesn't have a defined shell
 if(*pwd->pw_shell == '\0') pwd->pw_shell = _PATH_BSHELL;

 environ = (char**)malloc(sizeof(char*));
 memset(environ, 0, sizeof(char*));

 // set up the environment
 setenv("HOME", pwd->pw_dir, 0);

 if(pwd->pw_uid)
 setenv("PATH", _PATH_DEFPATH, 1);
 else
 setenv("PATH", _PATH_DEFPATH_ROOT, 1);

 setenv("SHELL", pwd->pw_shell, 1);
 setenv("LOGNAME", pwd->pw_name,1);

 int i;
 env = pam_getenvlist(pamh);

 if (env != NULL) {
 for (i=0; env[i]; i++) {
 putenv(env[i]);
 }
 }

 if (setsid() < 0) {
 fprintf(stderr, "open: Unable to set new session\n");
 }

 close(0);
 close(1);
 close(2);
 close(fd);
 // open the new vt
 // if this fails we can't tell anyone
 if ((fd = open(vtname, O_RDWR)) == -1) {
 _exit (4); // silently die
 }

 64

 dup(fd); dup(fd);

 (void) ioctl(fd, VT_ACTIVATE, vtno);
 (void) ioctl(fd, VT_WAITACTIVE, vtno);

 setuid(pwd->pw_uid);

 if (chdir(pwd->pw_dir) < 0) {
 printf(_("No directory %s!\n"), pwd->pw_dir);
 if (chdir("/"))
 exit(0);
 user_dir = "/";
 printf(_("Logging in with home = \"/\".\n"));
 }

 execlp("/bin/bash", "bash", NULL);

 }

 if (new_pid < 0) {
 PAM_END;
 perror("open: fork() error");
 return(6);
 }

 /* parent */
 signal(SIGHUP, SIG_IGN);
 signal(SIGINT, SIG_IGN);
 signal(SIGQUIT, SIG_IGN);
 signal(SIGTSTP, SIG_IGN);
 signal(SIGTTIN, SIG_IGN);
 signal(SIGTTOU, SIG_IGN);

 // update our database
 add_session(vtno, new_pid, fd);
 // the num_open_sessions is incremented in add_session
 current_session = num_open_sessions;

 // wait a couple of sec then lock the tty
 sleep(1);
 ioctl(fd, VT_LOCKSWITCH, 256);

 return 0;
}

 65

// Switch between virtual terminals
// return zero if successful
int switch_vt(vtno){

 int fd;

 if ((fd = open("/dev/console",O_WRONLY,0)) < 0) {
 perror("Can't open /dev/console\n");
 return(3);
 }

 // unlock the vt switching functionality
 ioctl(fd, VT_UNLOCKSWITCH, 256);

 if (ioctl(fd, VT_ACTIVATE, vtno) < 0) {
 fprintf(stderr, "Failed to select VT %d (%s)\n", vtno,
 strerror(errno));
 return(3);
 }

 // make sure we have switched
 (void) ioctl(fd, VT_WAITACTIVE, vtno);
 // lock the vt switching functionality
 ioctl(fd, VT_LOCKSWITCH, 256);

 return(0);
}

// display the trusted path menu
// returns the selected value
char do_tp_menu(){

 char letter;
 int error = 0;
 clear_screen();
 print_tp_menu();

 do {
 letter = getchar();
 error ++;
 if(error > 3) {
 clear_screen();

 66

 print_tp_menu_error();
 print_tp_menu();
 error = 0;
 }

 } while ((letter != 's') && (letter != 'q') && (letter != 'r'));

 return letter;
}

// a simplistic way to move everything
// off the screen
void clear_screen() {
 int i =0 ;
 for (i = 0; i < 50; i++)
 printf("\n");
}

void print_tp_menu(){
 printf("Type s then hit enter to start a new shell\n");
 printf("Type q then hit enter to quit a session\n");
 printf("Type r then hit enter to resume a session\n");
}

void print_tp_menu_error(){
 printf("you must select the letter s or q or r\n");
}

void display_SAK_msg(void){
 printf("\nPlease press the control and break key at the same time to
begin\n");
}

// This section is derived from login.c
//
// 2004-7-24 ahilchie@nps.navy.mi
// using pam to authenticate the user

int tp_auth() {

 char *tty_name;
 extern int optind; //used to grab tty from arg

 username = hostname = tty_name = NULL;

 67

 // set local environment, msg cat dir & gettext domain
 setlocale(LC_ALL,"");
 bindtextdomain(PACKAGE, LOCALEDIR);
 textdomain(PACKAGE);

 setpgrp();

 // start the pam auth procedure
 retcode = pam_start("login",username, &conv, &pamh);

 // bail out if we weren't able to talk with pam
 if(retcode != PAM_SUCCESS) {
 fprintf(stderr, _("login: PAM Failure, aborting: %s\n"),
 pam_strerror(pamh, retcode));
 syslog(LOG_ERR, _("Couldn't initialize PAM: %s"),
 pam_strerror(pamh, retcode));
 exit(99);
 }

 // hostname is set to NULL
 retcode = pam_set_item(pamh, PAM_RHOST, hostname);
 PAM_FAIL_CHECK;

 // for root to be able to login the tty name
 // must be set to one of the devices
 // listed in /etc/securetty
 // mg_tty is the tty value in /etc/inittab
 retcode = pam_set_item(pamh, PAM_TTY, mg_tty);
 PAM_FAIL_CHECK;

 // localize the user prompt
 retcode= pam_set_item(pamh, PAM_USER_PROMPT, _("Trusted Path
login: "));
 PAM_FAIL_CHECK;

 int failcount=0;

 // set user name to null
 pam_set_item(pamh, PAM_USER, NULL);

 // the primary authentication loop
 retcode = pam_authenticate(pamh, 0);
 while((failcount++ < PAM_MAX_LOGIN_TRIES) &&

 68

 ((retcode == PAM_AUTH_ERR) ||
 (retcode == PAM_USER_UNKNOWN) ||
 (retcode == PAM_CRED_INSUFFICIENT) ||
 (retcode == PAM_AUTHINFO_UNAVAIL))) {
 pam_get_item(pamh, PAM_USER, (const void **) &username);

 syslog(LOG_NOTICE,_("FAILED LOGIN %d FROM %s FOR %s,
%s"),
 failcount, hostname, username, pam_strerror(pamh, retcode));

 fprintf(stderr,_("Login incorrect\n\n"));
 pam_set_item(pamh,PAM_USER,NULL);
 retcode = pam_authenticate(pamh, 0);
 }

 // if pam failed capture the reason
 if (retcode != PAM_SUCCESS) {
 pam_get_item(pamh, PAM_USER, (const void **) &username);

 if (retcode == PAM_MAXTRIES)
 syslog(LOG_NOTICE,_("TOO MANY LOGIN TRIES (%d) FROM
%s FOR "
 "%s, %s"), failcount, hostname, username,
 pam_strerror(pamh, retcode));
 else
 syslog(LOG_NOTICE,_("FAILED LOGIN SESSION FROM %s FOR
%s, %s"),
 hostname, username, pam_strerror(pamh, retcode));

 fprintf(stderr,_("\nLogin incorrect\n"));
 pam_end(pamh, retcode);
 exit(0);
 }

 retcode = pam_acct_mgmt(pamh, 0);

 // prompt the user to change password if it is time
 if(retcode == PAM_NEW_AUTHTOK_REQD) {
 retcode = pam_chauthtok(pamh,
PAM_CHANGE_EXPIRED_AUTHTOK);
 }

 PAM_FAIL_CHECK;

 // update the username

 69

 retcode = pam_get_item(pamh, PAM_USER, (const void **)
&username);
 PAM_FAIL_CHECK;

 // if something is wrong with user name -- log it
 if (!username || !*username) {
 fprintf(stderr, _("\nSession setup problem, abort.\n"));
 syslog(LOG_ERR, _("NULL user name in %s:%d. Abort."),
 __FUNCTION__, __LINE__);
 pam_end(pamh, PAM_SYSTEM_ERR);
 exit(1);
 }
 if (!(pwd = getpwnam(username))) {
 fprintf(stderr, _("\nSession setup problem, abort.\n"));
 syslog(LOG_ERR, _("Invalid user name \"%s\" in %s:%d.
Abort."),
 username, __FUNCTION__, __LINE__);
 pam_end(pamh, PAM_SYSTEM_ERR);
 exit(1);
 }

 /*
 * Create a copy of the pwd struct - otherwise it may get
 * clobbered by PAM
 */
 memcpy(&pwdcopy, pwd, sizeof(*pwd));
 pwd = &pwdcopy;
 pwd->pw_name = strdup(pwd->pw_name);
 pwd->pw_passwd = strdup(pwd->pw_passwd);
 pwd->pw_gecos = strdup(pwd->pw_gecos);
 pwd->pw_dir = strdup(pwd->pw_dir);
 pwd->pw_shell = strdup(pwd->pw_shell);
 if (!pwd->pw_name || !pwd->pw_passwd || !pwd->pw_gecos ||
 !pwd->pw_dir || !pwd->pw_shell) {
 fprintf(stderr, _("login: Out of memory\n"));
 syslog(LOG_ERR, "Out of memory");
 pam_end(pamh, PAM_SYSTEM_ERR);
 exit(1);
 }
 username = pwd->pw_name;

 // Initialize the supplementary group list.
 // This should be done before pam_setcred because
 // the PAM modules might add groups during pam_setcred.
 if (initgroups(username, pwd->pw_gid) < 0) {

 70

 syslog(LOG_ERR, "initgroups: %m");
 fprintf(stderr, _("\nSession setup problem, abort.\n"));
 pam_end(pamh, PAM_SYSTEM_ERR);
 exit(1);
 }
 return 0;
}

// a function to allow the user to select a session
// if there is only one open session it returns w/o user input
// return is the session number
int get_session_num(){
 int rc = 0;
 int temp =0;
 clear_screen();
 //printf("in get session num and num open shells is: %d\n",
 // num_open_sessions);

 switch (num_open_sessions){

 case 0:
 printf("There is not an open shell\n");
 printf("Please select s to start a new shell\n");
 sleep(3);
 return rc;
 break;

 case 1:
 return 1;
 break;
 default:
 while(!rc){
 printf("There are %d open sessions\n",
 num_open_sessions);
 printf("Enter a session number to select it\n");
 char my_input;
 my_input = getchar();
 temp = atoi(&my_input);
 if(temp > 0 && temp <= num_open_sessions)
 rc = temp;
 printf("That selections is not valid\n");
 }
 return rc;
 }
}

 71

// error() - output error messages
// direct copy from mingetty
static void error (const char *fmt, ...)
{
 va_list va_alist;

 va_start (va_alist, fmt);
 openlog (progname, LOG_PID, LOG_AUTH);
 vsyslog (LOG_ERR, fmt, va_alist);
 /* no need, we exit anyway: closelog (); */
 va_end (va_alist);
 sleep (5);
 exit (EXIT_FAILURE);
}

// open_tty - set up tty as standard { input, output, error }
// direct copy from mingetty
static void open_tty (void)
{
 struct sigaction sa, sa_old;
 char buf[40];
 int fd;

 /* Set up new standard input. */
 if (mg_tty[0] == '/')
 strcpy (buf, mg_tty);
 else {
 strcpy (buf, "/dev/");
 strcat (buf, mg_tty);
 }
 /* There is always a race between this reset and the call to
 vhangup() that s.o. can use to get access to your tty. */
 if (chown (buf, 0, 0) || chmod (buf, 0600))
 if (errno != EROFS)
 error ("%s: %s", mg_tty, strerror (errno));

 sa.sa_handler = SIG_IGN;
 sa.sa_flags = 0;
 sigemptyset (&sa.sa_mask);
 sigaction (SIGHUP, &sa, &sa_old);

 /* vhangup() will replace all open file descriptors in the kernel
 that point to our controlling tty by a dummy that will deny
 further reading/writing to our device. It will also reset the

 72

 tty to sane defaults, so we don't have to modify the tty device
 for sane settings. We also get a SIGHUP/SIGCONT.
 */
 if ((fd = open (buf, O_RDWR, 0)) < 0)
 error ("%s: cannot open tty: %s", mg_tty, strerror (errno));
 if (ioctl (fd, TIOCSCTTY, (void *) 1) == -1)
 error ("%s: no controlling tty: %s", mg_tty, strerror (errno));
 if (!isatty (fd))
 error ("%s: not a tty", mg_tty);

 if (nohangup == 0) {
 if (vhangup ())
 error ("%s: vhangup() failed", mg_tty);
 /* Get rid of the present stdout/stderr. */
 close (2);
 close (1);
 close (0);
 close (fd);
 if ((fd = open (buf, O_RDWR, 0)) != 0)
 error ("%s: cannot open tty: %s", mg_tty,
 strerror (errno));
 if (ioctl (fd, TIOCSCTTY, (void *) 1) == -1)
 error ("%s: no controlling tty: %s", mg_tty,
 strerror (errno));
 }
 /* Set up stdin/stdout/stderr. */
 if (dup2 (fd, 0) != 0 || dup2 (fd, 1) != 1 || dup2 (fd, 2) != 2)
 error ("%s: dup2(): %s", mg_tty, strerror (errno));
 if (fd > 2)
 close (fd);
 /* Write a reset string to the terminal. This is very linux-specific
 and should be checked for other systems. */
 if (noclear == 0)
 write (0, "\033c", 2);

 sigaction (SIGHUP, &sa_old, NULL);
}

// handle the user 1 signal that the kernel
// sends to notify the trusted path of the SAK
void tp_signal_catcher(int the_sig){
 if (the_sig == SIGUSR1){
 return;
 }
}

 73

// adds a user session to the sessions array
void add_session(int new_tty, int new_pid, int new_fd){
 sessions[num_open_sessions].session_tty = new_tty;
 sessions[num_open_sessions].session_pid = new_pid;
 sessions[num_open_sessions].session_fd = new_fd;
 num_open_sessions ++;
}

// remove a user session from the sessions array
void delete_session(int session_num){
 //validate the session_num
 if (session_num > num_open_sessions){
 printf("the session number is too large\n");
 return;
 }
 if (session_num < 0){
 printf("the session number is too small\n");
 return;
 }
 //careful the array is zero indexed
 int array_index = session_num - 1;
 //simple case first
 if (array_index == (num_open_sessions - 1)){
 // sort of redundent but ...
 sessions[session_num].session_tty = 0;
 sessions[session_num].session_pid = 0;
 sessions[session_num].session_fd = 0;
 num_open_sessions --;
 }
 else {
 int loopcounter = array_index;
 loopcounter ++;
 while (loopcounter <= num_open_sessions){
 //move the info up a slot
 sessions[loopcounter-1].session_tty =
 sessions[loopcounter].session_tty;
 sessions[loopcounter-1].session_pid =
 sessions[loopcounter].session_pid;
 sessions[loopcounter-1].session_fd =
 sessions[loopcounter].session_fd;
 loopcounter++;
 }
 num_open_sessions --;
 }
}

 74

THIS PAGE INTENTIONALLLY LEFT BLANK

 75

APPENDIX B. TRUSTED PATH – KERNEL

These two files, trustedpath.h and trustedpath.c are the kernel portions of the

trusted path. Additional kernel modifications were necessary for the project and are

documented in the other appendices.

trustedpath.h

#ifndef __LINUX_TRUSTEDPATH_H
#define __LINUX_TRUSTEDPATH_H

/* include/linux/trustedpath.h
 *
 * ver 1 ahilchie 6-14-04
 *
 * Demo implementation of Trusted Path for SELinux
 *
 * based on the magic system request key
 */

#include <linux/config.h>
#include <linux/linkage.h>
#include <linux/sched.h>

#define REGISTER 0
#define SUSPEND 1
#define RESTORE 2
#define KILL 3

struct pt_regs;
struct tty_struct;

/* Trusted Path interface
*/

void handle_trustedpath(struct pt_regs *, struct tty_struct *);
void send_sak_sig(void);
int suspend_all_processes(int user_pid);
int restore_all_processes(int pid);
#endif

 76

trustedpath.c

// drivers/char/trustedpath.c
// ver 1 ahilchie 6-14-04
// Demo implementation of Trusted Path for SELinux

#include <linux/config.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/tty.h>
#include <linux/mount.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/trustedpath.h>
#include <linux/kbd_kern.h>
#include <linux/quotaops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h>
#include <asm/ptrace.h>
#include <linux/list.h>
//#include <sys/syscall.h>
//#include <asm/uaccess.h>

unsigned long last_tp_time = 0;
unsigned long tp_delay = 1;

//extern void *sys_call_table[];
//int uid;

//asmlinkage int(*getuid_call)();

// trusted path userspace module pid
// this is the only process we will accept
// system calls from
// by default we trust init's parent
int tpum = 0;

// lock will be set to one after the first
// registration of the user space trusted path

 77

// this will prevent new processes trying to
// pretend to be the trusted path
int lock = 0;

// Notify the trusted path in user space that a SAK has arrived
void send_sak_sig(){
 // test to make sure tpum is registered
 if (tpum ==0){
 printk(KERN_CRIT "Received SAK prior to Trusted Path registering");
 }
 else {
 struct task_struct *p;
 p = find_task_by_pid(tpum);
 force_sig(SIGUSR1, p);
 }
}

// Handle the SAK notification from keyboard.c
// The trusted path state is maintained in userspace
// so all the kernel does is signal the trusted path
void handle_trustedpath(struct pt_regs *pt_regs, struct tty_struct *tty){

 // hack to stop multiple responses to single keystroke
 if (get_seconds() <= last_tp_time + tp_delay)
 return;

 last_tp_time = get_seconds();

 send_sak_sig();
}

// Another helper funtion to suspend processes associated
// with a user pid
// It is a little clunky because we are receiving an int
// not a task_struct from user space. Therefore we end up cycling
// through all the processes
int suspend_all_processes(user_pid){

 int user_tp_id =0;
 struct task_struct *p;

 int my_tty =0;

 // enumerate all the processes
 for_each_process(p) {

 78

 //printk(KERN_CRIT "PID is %d and TP_ID is %d \n", p->pid, p->tp_id);

 // identify the process user_pid
 if(p->pid == user_pid){

 //get the trusted path id of the user_pid
 user_tp_id = p->tp_id;
 my_tty = (int) p->tty;
 }
 }

 // test to make sure that we did find a user_tp_id
 if (!user_tp_id) return -1;

 // user_tp_id now contains the correct number
 // user_pid is the trusted path pid
 for_each_process(p){

 // if p has the correct tp_id
 if(p->tp_id == user_tp_id){
 //printk(KERN_CRIT "Bingo on pid %d\n", p->pid);
 suspend_task(p);

 }
 }

 // test routine to visualize the status of all the processes
 /*{
 printk(KERN_CRIT "Suspend debug routine\n");
 for_each_process(p){
 // int my_rq;
 // my_rq = task_rq(p);
 printk(KERN_CRIT "pid=%d do_not_activate=%d \n",
 p->pid, p->do_not_activate);
 }
 }*/
 return 0;
}

// Takes an int that is the pid of the trusted path
// gets the tp_id and restores all processes with that tp_id
// except the trusted path
int restore_all_processes(user_pid){

 79

 int user_tp_id =0;
 struct task_struct *p;

 // find the tp_id of user_pid
 for_each_process(p) {

 // printk(KERN_CRIT "PID is %d and TP_ID is %d \n",
 //p->pid, p->tp_id);
 if(p->pid == user_pid){
 user_tp_id = p->tp_id;
 //printk(KERN_CRIT "user tp id is %d\n", user_tp_id);
 }
 }

 //test to make sure we were able to find the tp_id
 if(! user_tp_id)
 return -1;

 // restore all the processes with that tp_id
 for_each_process(p) {

 // if p has the correct tp_id
 if(p->tp_id == user_tp_id){
 resume_task(p);
 }
 }

 // test routine to visualize the status of all the processes
 /* {
 printk(KERN_CRIT "Restore debug routine\n");
 for_each_process(p){
 // int my_rq;
 // my_rq = task_rq(p);
 printk(KERN_CRIT "pid=%d do_not_activate=%d \n", p->pid, p-
>do_not_activate);
 }
 }*/

 return 0;
}

// helper function to kill all the processes associated
// a session
void kill_all_processes(int user_pid){

 80

 int user_tp_id =0;
 struct task_struct *p;

 // enumerate all the processes
 for_each_process(p) {

 // identify the process user_pid
 if(p->pid == user_pid){
 //get the trusted path id of the user_pid
 user_tp_id = p->tp_id;
 //printk(KERN_CRIT "user tp id is %d\n", user_tp_id);
 }
 }
 // terminate each process with the tp_id
 for_each_process(p) {

 //printk(KERN_CRIT "PID is %d tp_id is %d\n",
 // p->pid, p->tp_id);
 // if p has the correct tp_id
 if(p->tp_id == user_tp_id){

 // printk(KERN_CRIT "Bingo on pid %d\n", p->pid);
 printk(KERN_CRIT "terminating pid %d\n", p->pid);
 force_sig(SIGKILL, p);
 }
 }
}

asmlinkage int sys_trustedpath(int type_msg, int pid){

 printk(KERN_CRIT "Pid %d called tp\n", current->pid);

 switch (type_msg) {

 case REGISTER:
 // set the lock after the first registration
 // there could be some potential problems
 // e.g. if the trusted path dies we would
 // have to reboot
 if (!lock){
 tpum = pid;
 lock = 1;
 printk(KERN_CRIT
 "Trusted path registerd for pid %i\n"
 , pid);

 81

 }
 break;

 case SUSPEND:
 if (current->pid == tpum){
 suspend_all_processes(pid);
 printk(KERN_CRIT "tp suspend\n");
 }
 break;

 case RESTORE:
 if (current->pid == tpum){
 restore_all_processes(pid);
 printk(KERN_CRIT "tp restore\n");
 }
 break;

 case KILL:
 if (current->pid == tpum){
 kill_all_processes(pid);
 printk(KERN_CRIT "tp kill\n");
 }
 break;

 default:
 printk(KERN_CRIT "incorrect trusted path syscall\n");
 }

 return(0);
}

EXPORT_SYMBOL(handle_trustedpath);

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

APPENDIX C. TRUSTED PATH SYSTEM CALL

This appendix provides detailed implementation information for the trusted path

system call.

Adding the interrupt

In the arch/i386/kernel/entry.S file add at line 1040
/* system call for the trusted path
 * ahilchie 7-12-04
 */
.long sys_trustedpath /* 274 */

Adding the stub

In the include/asm-i386/unistd.h file add at line 282

#define __NR_trustedpath 274

at line 284 increment the number of valid syscalls
#define NR_syscalls 275

Modifications to trustedpath.h

Added access to the system call macro file.
#include <linux/linkage.h>
#define REGISTER 0
#define SUSPEND 1
#define RESTORE 2
#define KILL 3

Modifications to trustedpath.c

/* handle trusted path system calls */

asmlinkage int sys_trustedpath(int type_msg, int user_pid){

 switch (type_msg) {
 case REGISTER:
 …
 break;
 case SUSPEND:
 …

 84

 break;
 case RESTORE:
 …
 break;
 case KILL:
 …
 break;
 default:
 …
 }
 return(0);
}

User space header to support the system call

Userspace.h

#define REGISTER 0
#define SUSPEND 1
#define RESTORE 2
#define KILL 3

#include <linux/unistd.h>

_syscall2(int, trustedpath, int, type_msg, int, user_pid);

 85

APPENDIX D. SCHEDULE MODIFICATION

This appendix contains the modifications made to the sched.h and sched.c files in

the kernel source tree. Code added as part of this work is in bold face.

sched.h

Due to the size of the original files, only the process table is presented.

The process table, task_struct, was modified to include a new integer process ID

for use by the trusted path. This is labeled as tp_id and is used to determine the original

parent of processes.

struct task_struct {
volatile long state; /*-1 unrunnable, 0 runnable, >0 stopped*/

 struct thread_info *thread_info;
 atomic_t usage;
 unsigned long flags; /* per process flags, defined below */
 unsigned long ptrace;

 int lock_depth; /* Lock depth */

 int prio, static_prio;
 struct list_head run_list;
 prio_array_t *array;
/* DJS - Flag to control the activation of suspended tasks */
 int do_not_activate;

 unsigned long sleep_avg;
 long interactive_credit;
 unsigned long long timestamp;
 int activated;

 unsigned long policy;
 cpumask_t cpus_allowed;
 unsigned int time_slice, first_time_slice;

 struct list_head tasks;
 struct list_head ptrace_children;
 struct list_head ptrace_list;

 struct mm_struct *mm, *active_mm;

 86

/* task state */
 struct linux_binfmt *binfmt;
 int exit_code, exit_signal;
 int pdeath_signal; /* The signal sent when the parent dies */
 /* ??? */
 unsigned long personality;
 int did_exec:1;
 pid_t pid;
 pid_t __pgrp; /* Accessed via process_group() */
 pid_t tty_old_pgrp;
 pid_t session;
 pid_t tgid;

 // trusted path id -- tp_id
 // ahilchie 6-16-04
 // the true parent pid of this process
 // to allow finding all the processes associated with a user

 pid_t tp_id;

 /* boolean value for session group leader */
 int leader;
 /*
 * pointers to (original) parent process, youngest child, younger sibling,
 * older sibling, respectively. (p->father can be replaced with
 * p->parent->pid)
 */
 struct task_struct *real_parent; /* real parent process (when being
debugged) */
 struct task_struct *parent; /* parent process */
 struct list_head children; /* list of my children */
 struct list_head sibling; /* linkage in my parent's children list */
 struct task_struct *group_leader; /* threadgroup leader */

 /* PID/PID hash table linkage. */
 struct pid_link pids[PIDTYPE_MAX];

 wait_queue_head_t wait_chldexit; /* for wait4() */
 struct completion *vfork_done; /* for vfork() */
 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */

 unsigned long rt_priority;
 unsigned long it_real_value, it_prof_value, it_virt_value;
 unsigned long it_real_incr, it_prof_incr, it_virt_incr;

 87

 struct timer_list real_timer;
 struct list_head posix_timers; /* POSIX.1b Interval Timers */
 unsigned long utime, stime, cutime, cstime;
 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; /* context switch counts
*/
 u64 start_time;
/* mm fault and swap info: this can arguably be seen as either mm-specific or
thread-specific */
 unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
/* process credentials */
 uid_t uid,euid,suid,fsuid;
 gid_t gid,egid,sgid,fsgid;
 struct group_info *group_info;
 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
 int keep_capabilities:1;
 struct user_struct *user;
/* limits */
 struct rlimit rlim[RLIM_NLIMITS];
 unsigned short used_math;
 char comm[16];
/* file system info */
 int link_count, total_link_count;
 struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
 struct sysv_sem sysvsem;
/* CPU-specific state of this task */
 struct thread_struct thread;
/* filesystem information */
 struct fs_struct *fs;
/* open file information */
 struct files_struct *files;
/* namespace */
 struct namespace *namespace;
/* signal handlers */
 struct signal_struct *signal;
 struct sighand_struct *sighand;

 sigset_t blocked, real_blocked;
 struct sigpending pending;

 unsigned long sas_ss_sp;
 size_t sas_ss_size;
 int (*notifier)(void *priv);
 void *notifier_data;
 sigset_t *notifier_mask;

 88

 /* TUX state */
 void *tux_info;
 void (*tux_exit)(void);

 void *security;
 struct audit_context *audit_context;

/* Thread group tracking */
 u32 parent_exec_id;
 u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty */
 spinlock_t alloc_lock;
/* Protection of proc_dentry: nesting proc_lock, dcache_lock,
write_lock_irq(&tasklist_lock); */
 spinlock_t proc_lock;
/* context-switch lock */
 spinlock_t switch_lock;

/* journalling filesystem info */
 void *journal_info;

/* VM state */
 struct reclaim_state *reclaim_state;

 struct dentry *proc_dentry;
 struct backing_dev_info *backing_dev_info;

 struct io_context *io_context;

 unsigned long ptrace_message;
 siginfo_t *last_siginfo; /* For ptrace use. */

};

// ahilchie trusted path mod by DJS
void suspend_task(struct task_struct *p);
void resume_task(struct task_struct *p);

sched.c
Only the functions that were modified are presented

struct runqueue {
 spinlock_t lock;
 unsigned long long nr_switches;
 unsigned long nr_running, expired_timestamp, nr_uninterruptible,

 89

 timestamp_last_tick;
/* DJS - keep track of how many tasks are suspended */
 unsigned long nr_suspend;
 task_t *curr, *idle;
 struct mm_struct *prev_mm;
 prio_array_t *active, *expired, arrays[2];
/* DJS - Here is where we keep the suspended tasks */
 prio_array_t *suspend_active,*suspend_expired, suspend_arrays[2];
 int best_expired_prio, prev_cpu_load[NR_CPUS];
#ifdef CONFIG_NUMA
 atomic_t *node_nr_running;
 int prev_node_load[MAX_NUMNODES];
#endif
 task_t *migration_thread;
 struct list_head migration_queue;

 atomic_t nr_iowait;
};

/* DJS - macros for handling the nr_suspend counters */
/* DJS - Hhmmm - why wasn't nr_running initiailzed to zero? */
define nr_suspend_init(rq) do { (rq)->nr_suspend=0; } while (0)
define nr_suspend_inc(rq) do { (rq)->nr_suspend++; } while (0)
define nr_suspend_dec(rq) do { (rq)->nr_suspend--; } while (0)

/*
 * __activate_task - move a task to the runqueue.
 */
static inline void __activate_task(task_t *p, runqueue_t *rq)
{
/* DJS - Only activate if were allowed (e.g. it is not suspended) */
 if (!p->do_not_activate) {
 enqueue_task(p, rq->active);
 nr_running_inc(rq);
 }
}

/* DJS - New function to suspend a task */
/*
 * suspend_task - move a task from the active/expired arrays
 * to the suspend_active/suspend_expire arrays
 */
//static inline
void suspend_task(struct task_struct *p) //, runqueue_t *rq)
{

 90

 int is_active=1;

 // ahilchie added
 struct runqueue *rq;
 rq = task_rq(p);

 if(p->array)
 {

/* DJS - determine if the task is active or expired */
 if (p->array == rq->expired)
 is_active=0;
 nr_running_dec(rq);

 dequeue_task(p, p->array);
 if (is_active) {
 enqueue_task(p, rq->suspend_active);
 }else{
 enqueue_task(p, rq->suspend_expired);
 }
 nr_suspend_inc(rq);
 }else{
 // Mark the task so it doesn't get activated
 p->do_not_activate = 1;
 }
}

/* DJS - New function to resume a suspended a task */
/*
 * resume_task - move a task from the suspend_active/suspend_expired arrays
 * to the active/expire arrays
 */
//static inline
void resume_task(struct task_struct *p)//, runqueue_t *rq)
{
 int is_active=1;
 // ahilchie added
 struct runqueue *rq;
 rq = task_rq(p);

 if(p->array)
 {
/* DJS - determine if the task is active or expired */
 if (p->array == rq->suspend_expired)
 is_active=0;

 91

 nr_suspend_dec(rq);
 dequeue_task(p, p->array);
 if (is_active) {
 enqueue_task(p, rq->active);
 }else{
 enqueue_task(p, rq->expired);
 }
 nr_running_inc(rq);
 }else{
 // Mark the task so it can get activated
 p->do_not_activate = 0;
 }
}

static int try_to_wake_up(task_t * p, unsigned int state, int sync)
{
 unsigned long flags;
 int success = 0;
 long old_state;
 runqueue_t *rq;

repeat_lock_task:
 rq = task_rq_lock(p, &flags);
 old_state = p->state;
 if (old_state & state) {
 if (!p->array) {
 /*
 * Fast-migrate the task if it's not running or runnable
 * currently. Do not violate hard affinity.
 */
 if (unlikely(sync && !task_running(rq, p) &&
 (task_cpu(p) != smp_processor_id()) &&
 cpu_isset(smp_processor_id(),
 p->cpus_allowed) &&
 !cpu_is_offline(smp_processor_id()))) {
 set_task_cpu(p, smp_processor_id());
 task_rq_unlock(rq, &flags);
 goto repeat_lock_task;
 }
 if (old_state == TASK_UNINTERRUPTIBLE) {
 rq->nr_uninterruptible--;
 /*
 * Tasks on involuntary sleep don't earn
 * sleep_avg beyond just interactive state.
 */

 92

 p->activated = -1;
 }
 if (sync && (task_cpu(p) == smp_processor_id()))
 __activate_task(p, rq);
 else {
 activate_task(p, rq);
 if (TASK_PREEMPTS_CURR(p, rq))
 resched_task(rq->curr);
 }
 success = 1;
 }
/* DJS - Only change the state if it is in a runqueue */
 if (p->array) {
 p->state = TASK_RUNNING;
 }
 }
 task_rq_unlock(rq, &flags);

 return success;
}

void fastcall wake_up_forked_process(task_t * p)
{
 unsigned long flags;
 runqueue_t *rq = task_rq_lock(current, &flags);

 BUG_ON(p->state != TASK_RUNNING);

 /*
 * We decrease the sleep average of forking parents
 * and children as well, to keep max-interactive tasks
 * from forking tasks that are max-interactive.
 */
 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

 p->interactive_credit = 0;

 p->prio = effective_prio(p);
 set_task_cpu(p, smp_processor_id());

 if (unlikely(!current->array))

 93

 __activate_task(p, rq);
 else {
/* DJS - Only add it, if it is not suspended */
 if (!p->do_not_activate) {
 p->prio = current->prio;
 list_add_tail(&p->run_list, ¤t->run_list);
 p->array = current->array;
 p->array->nr_active++;
 nr_running_inc(rq);
 }
 }
 task_rq_unlock(rq, &flags);
}

void __init sched_init(void)
{
 runqueue_t *rq;
 int i, j, k;

 for (i = 0; i < NR_CPUS; i++) {
 prio_array_t *array;

 rq = cpu_rq(i);
 rq->active = rq->arrays;
 rq->expired = rq->arrays + 1;
/* DJS - init the suspend arrays */
 rq->suspend_active = rq->suspend_arrays;
 rq->suspend_expired = rq->suspend_arrays + 1;
 rq->best_expired_prio = MAX_PRIO;

 spin_lock_init(&rq->lock);
 INIT_LIST_HEAD(&rq->migration_queue);
 atomic_set(&rq->nr_iowait, 0);
 nr_running_init(rq);

 for (j = 0; j < 2; j++) {
 array = rq->arrays + j;
 for (k = 0; k < MAX_PRIO; k++) {
 INIT_LIST_HEAD(array->queue + k);
 __clear_bit(k, array->bitmap);
 }
 // delimiter for bitsearch
 __set_bit(MAX_PRIO, array->bitmap);
 }

 94

/* DJS - more init of the suspend arrays */
 nr_suspend_init(rq);
 for (j = 0; j < 2; j++) {
 array = rq->suspend_arrays + j;
 for (k = 0; k < MAX_PRIO; k++) {
 INIT_LIST_HEAD(array->queue + k);
 __clear_bit(k, array->bitmap);
 }
 // delimiter for bitsearch
 __set_bit(MAX_PRIO, array->bitmap);
 }
 }
 /*
 * We have to do a little magic to get the first
 * thread right in SMP mode.
 */
 rq = this_rq();
 rq->curr = current;
 rq->idle = current;
/* DJS - make sure we can activate it */
 current->do_not_activate = 0;
 set_task_cpu(current, smp_processor_id());
 wake_up_forked_process(current);

 init_timers();

 /*
 * The boot idle thread does lazy MMU switching as well:
 */
 atomic_inc(&init_mm.mm_count);
 enter_lazy_tlb(&init_mm, current);
}

 95

APPENDIX E. KEYBOARD DRIVER MODIFICATIONS

This appendix contains the modification to the keyboard driver for the SELinux

trusted path. For the sake of understandability the entire kbd_keycode function, which

contains the additional trusted path code, is provided. Code added as part of this work is

in bold face.

void kbd_keycode(unsigned int keycode, int down, struct pt_regs *regs)
{
 struct vc_data *vc = vc_cons[fg_console].d;
 unsigned short keysym, *key_map;
 unsigned char type, raw_mode;
 struct tty_struct *tty;
 int shift_final;

 if (down != 2)
 add_keyboard_randomness((keycode << 1) ^ down);

 tty = vc->vc_tty;

 if (tty && (!tty->driver_data)) {
 /* No driver data? Strange. Okay we fix it then. */
 tty->driver_data = vc;
 }

 kbd = kbd_table + fg_console;

 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
 sysrq_alt = down;
#if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64)
 if (keycode == KEY_STOP)
 sparc_l1_a_state = down;
#endif

 rep = (down == 2);

#ifdef CONFIG_MAC_EMUMOUSEBTN
 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
 return;
#endif /* CONFIG_MAC_EMUMOUSEBTN */

 if ((raw_mode = (kbd->kbdmode == VC_RAW)))

 96

 if (emulate_raw(vc, keycode, !down << 7))
 if (keycode < BTN_MISC)
 printk(KERN_WARNING "keyboard.c: can't

emulate rawmode for keycode %d\n", keycode);
/
 * ahilchie trusted path 6-13-0
 *
 * catch the trusted path SAK and notify the
 * kernel trusted path modul

 *
 if (keycode == KEY_LEFTCTRL || keycode == KEY_RIGHTCTRL)
 tp_ctrl = down;

 if(keycode == KEY_PAUSE && tp_ctrl){
 handle_trustedpath(regs, tty);
 return;
 }

#ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 &&

sysrq_alt))) {
 sysrq_down = down;
 return;
 }
 if (sysrq_down && down && !rep) {
 handle_sysrq(kbd_sysrq_xlate[keycode], regs, tty);
 return;
 }
#endif
#if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64)
 if (keycode == KEY_A && sparc_l1_a_state) {
 sparc_l1_a_state = 0;
 sun_do_break();
 }
#endif

 if (kbd->kbdmode == VC_MEDIUMRAW) {
 /*
 * This is extended medium raw mode, with keys above 127
 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
 * the 'up' flag if needed. 0 is reserved, so this shouldn't
 * interfere with anything else. The two bytes after 0 will
 * always have the up flag set not to interfere with older

 97

 * applications. This allows for 16384 different keycodes,
 * which should be enough.
 */
 if (keycode < 128) {
 put_queue(vc, keycode | (!down << 7));
 } else {
 put_queue(vc, !down << 7);
 put_queue(vc, (keycode >> 7) | 0x80);
 put_queue(vc, keycode | 0x80);
 }
 raw_mode = 1;
 }

 if (down)
 set_bit(keycode, key_down);
 else
 clear_bit(keycode, key_down);

 if (rep && (!vc_kbd_mode(kbd, VC_REPEAT) || (tty &&
 (!L_ECHO(tty) && tty->driver->chars_in_buffer(tty))))) {
 /*
 * Don't repeat a key if the input buffers are not empty and the
 * characters get aren't echoed locally. This makes key repeat
 * usable with slow applications and under heavy loads.
 */
 return;
 }

 shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
 key_map = key_maps[shift_final];

 if (!key_map) {
 compute_shiftstate();
 kbd->slockstate = 0;
 return;
 }

 keysym = key_map[keycode];
 type = KTYP(keysym);

 if (type < 0xf0) {
 if (down && !raw_mode) to_utf8(vc, keysym);
 return;
 }

 98

 type -= 0xf0;

 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
 return;

 if (type == KT_LETTER) {
 type = KT_LATIN;
 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
 if (key_map)
 keysym = key_map[keycode];
 }
 }

 (*k_handler[type])(vc, keysym & 0xff, !down, regs);

 if (type != KT_SLOCK)
 kbd->slockstate = 0;
}

 99

APPENDIX F. FORK MODIFICATION

This appendix contains the modification made to the fork.c file in the kernel

source tree. Code added as part of this work is in bold face. Due to the size of the

original files, only the process copy, copy_process, function is presented. The copy

process is called during the creation of all processes except for the original process init.

The modification sets the trusted path identifier, tp_id, to the tp_id of its parent

process unless it’s parent is init, e.g., process ID 1, in which case the tp_id is set to the

current process ID. Since init will start the getty process each time each session has a

single unique tp_id that is not modified during the course of execution.

struct task_struct *copy_process(unsigned long clone_flags,
 unsigned long stack_start,
 struct pt_regs *regs,
 unsigned long stack_size,
 int __user *parent_tidptr,
 int __user *child_tidptr)
{
 int retval;
 struct task_struct *p = NULL;

 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) ==
(CLONE_NEWNS|CLONE_FS))
 return ERR_PTR(-EINVAL);

 /*
 * Thread groups must share signals as well, and detached threads
 * can only be started up within the thread group.
 */
 if ((clone_flags & CLONE_THREAD) && !(clone_flags &
CLONE_SIGHAND))
 return ERR_PTR(-EINVAL);

 /*
 * Shared signal handlers imply shared VM. By way of the above,
 * thread groups also imply shared VM. Blocking this case allows
 * for various simplifications in other code.
 */
 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags &
CLONE_VM))

 100

 return ERR_PTR(-EINVAL);

 retval = security_task_create(clone_flags);
 if (retval)
 goto fork_out;

 retval = -ENOMEM;
 p = dup_task_struct(current);
 if (!p)
 goto fork_out;
 p->tux_info = NULL;

 retval = -EAGAIN;
 if (atomic_read(&p->user->processes) >=
 p->rlim[RLIMIT_NPROC].rlim_cur) {
 if (!capable(CAP_SYS_ADMIN) &&
!capable(CAP_SYS_RESOURCE) &&
 p->user != &root_user)
 goto bad_fork_free;
 }

 atomic_inc(&p->user->__count);
 atomic_inc(&p->user->processes);
 get_group_info(p->group_info);

 /*
 * If multiple threads are within copy_process(), then this check
 * triggers too late. This doesn't hurt, the check is only there
 * to stop root fork bombs.
 */
 if (nr_threads >= max_threads)
 goto bad_fork_cleanup_count;

 if (!try_module_get(p->thread_info->exec_domain->module))
 goto bad_fork_cleanup_count;

 if (p->binfmt && !try_module_get(p->binfmt->module))
 goto bad_fork_cleanup_put_domain;

 p->did_exec = 0;
 copy_flags(clone_flags, p);
 if (clone_flags & CLONE_IDLETASK)
 p->pid = 0;
 else {
 p->pid = alloc_pidmap();

 101

 if (p->pid == -1)
 goto bad_fork_cleanup;
 }
 retval = -EFAULT;
 if (clone_flags & CLONE_PARENT_SETTID)
 if (put_user(p->pid, parent_tidptr))
 goto bad_fork_cleanup;

 p->proc_dentry = NULL;

 INIT_LIST_HEAD(&p->children);
 INIT_LIST_HEAD(&p->sibling);
 INIT_LIST_HEAD(&p->posix_timers);
 init_waitqueue_head(&p->wait_chldexit);
 p->vfork_done = NULL;
 spin_lock_init(&p->alloc_lock);
 spin_lock_init(&p->proc_lock);

 clear_tsk_thread_flag(p, TIF_SIGPENDING);
 init_sigpending(&p->pending);

 p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
 p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
 init_timer(&p->real_timer);
 p->real_timer.data = (unsigned long) p;

 p->leader = 0; /* session leadership doesn't inherit */
 p->tty_old_pgrp = 0;
 p->utime = p->stime = 0;
 p->cutime = p->cstime = 0;
 p->lock_depth = -1; /* -1 = no lock */
 p->start_time = get_jiffies_64();
 p->security = NULL;
 p->io_context = NULL;
 p->audit_context = NULL;

 retval = -ENOMEM;
 if ((retval = security_task_alloc(p)))
 goto bad_fork_cleanup;
 if ((retval = audit_alloc(p)))
 goto bad_fork_cleanup_security;
 /* copy all the process information */
 if ((retval = copy_semundo(clone_flags, p)))
 goto bad_fork_cleanup_audit;
 if ((retval = copy_files(clone_flags, p)))

 102

 goto bad_fork_cleanup_semundo;
 if ((retval = copy_fs(clone_flags, p)))
 goto bad_fork_cleanup_files;
 if ((retval = copy_sighand(clone_flags, p)))
 goto bad_fork_cleanup_fs;
 if ((retval = copy_signal(clone_flags, p)))
 goto bad_fork_cleanup_sighand;
 if ((retval = copy_mm(clone_flags, p)))
 goto bad_fork_cleanup_signal;
 if ((retval = copy_namespace(clone_flags, p)))
 goto bad_fork_cleanup_mm;
 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
 if (retval)
 goto bad_fork_cleanup_namespace;

 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ?
child_tidptr : NULL;
 /*
 * Clear TID on mm_release()?
 */
 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ?
child_tidptr: NULL;

 /*
 * Syscall tracing should be turned off in the child regardless
 * of CLONE_PTRACE.
 */
 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);

 /* Our parent execution domain becomes current domain
 These must match for thread signalling to apply */

 p->parent_exec_id = p->self_exec_id;

 /* ok, now we should be set up.. */
 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags &
CSIGNAL);
 p->pdeath_signal = 0;

 /* Perform scheduler related setup */
 sched_fork(p);

 /*
 * Ok, make it visible to the rest of the system.
 * We dont wake it up yet.

 103

 */
 p->tgid = p->pid;
 p->group_leader = p;
 INIT_LIST_HEAD(&p->ptrace_children);
 INIT_LIST_HEAD(&p->ptrace_list);

 /* Need tasklist lock for parent etc handling! */
 write_lock_irq(&tasklist_lock);
 /*
 * Check for pending SIGKILL! The new thread should not be allowed
 * to slip out of an OOM kill. (or normal SIGKILL.)
 */
 if (sigismember(¤t->pending.signal, SIGKILL)) {
 write_unlock_irq(&tasklist_lock);
 retval = -EINTR;
 goto bad_fork_cleanup_namespace;
 }

 /* CLONE_PARENT re-uses the old parent */
 if (clone_flags & CLONE_PARENT)
 p->real_parent = current->real_parent;
 else
 p->real_parent = current;
 p->parent = p->real_parent;

 /* tp_id set to real parent
 // ahilchie 6-16-04
 // to allow finding all the processes associated with a user
 // this avoids the CLONE_PARENT logic above
 // and gives us a legitimate tp_id

 // The logic
 //
 // first pid > 0 will be the trusted path
 // the next one will be the shell pid

 // if the parent of the current (parent)
 // process is init e.g.
 // init is 0 which spawns
 // trusted path (current) is XXX which spawns
 // session shell (p) is XXX + X
 if (! current->parent->parent->pid)
 //then the tp_id is p->pid
 p->tp_id = p->pid;
 else

 104

 // if init is not the grandparent
 // then use parents tp_id
 p->tp_id = current->tp_id;

 if (clone_flags & CLONE_THREAD) {
 spin_lock(¤t->sighand->siglock);
 /*
 * Important: if an exit-all has been started then
 * do not create this new thread - the whole thread
 * group is supposed to exit anyway.
 */
 if (current->signal->group_exit) {
 spin_unlock(¤t->sighand->siglock);
 write_unlock_irq(&tasklist_lock);
 retval = -EAGAIN;
 goto bad_fork_cleanup_namespace;
 }
 p->tgid = current->tgid;
 p->group_leader = current->group_leader;

 if (current->signal->group_stop_count > 0) {
 /*
 * There is an all-stop in progress for the group.
 * We ourselves will stop as soon as we check signals.
 * Make the new thread part of that group stop too.
 */
 current->signal->group_stop_count++;
 set_tsk_thread_flag(p, TIF_SIGPENDING);
 }

 spin_unlock(¤t->sighand->siglock);
 }

 SET_LINKS(p);
 if (p->ptrace & PT_PTRACED)
 __ptrace_link(p, current->parent);

 attach_pid(p, PIDTYPE_PID, p->pid);
 if (thread_group_leader(p)) {
 attach_pid(p, PIDTYPE_TGID, p->tgid);
 attach_pid(p, PIDTYPE_PGID, process_group(p));
 attach_pid(p, PIDTYPE_SID, p->session);
 if (p->pid)
 __get_cpu_var(process_counts)++;
 } else

 105

 link_pid(p, p->pids + PIDTYPE_TGID, &p->group_leader-
>pids[PIDTYPE_TGID].pid);

 nr_threads++;
 write_unlock_irq(&tasklist_lock);
 retval = 0;

fork_out:
 if (retval)
 return ERR_PTR(retval);
 return p;

bad_fork_cleanup_namespace:
 exit_namespace(p);
bad_fork_cleanup_mm:
 exit_mm(p);
bad_fork_cleanup_signal:
 exit_signal(p);
bad_fork_cleanup_sighand:
 exit_sighand(p);
bad_fork_cleanup_fs:
 exit_fs(p); /* blocking */
bad_fork_cleanup_files:
 exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
 exit_sem(p);
bad_fork_cleanup_audit:
 audit_free(p);
bad_fork_cleanup_security:
 security_task_free(p);
bad_fork_cleanup:
 if (p->pid > 0)
 free_pidmap(p->pid);
 if (p->binfmt)
 module_put(p->binfmt->module);
bad_fork_cleanup_put_domain:
 module_put(p->thread_info->exec_domain->module);
bad_fork_cleanup_count:
 put_group_info(p->group_info);
 atomic_dec(&p->user->processes);
 free_uid(p->user);
bad_fork_free:
 free_task(p);
 goto fork_out;
}

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

APPENDIX G. INSTALLATION GUIDE

Installation of Fedora Core 2.2

Boot to CDROM FC 2.2 disk 1
Graphical install
Skip CDROM check
Normal selections e.g. English
Custom install
Automatic partitioning with defaults
Default grup loader
Default DHCP
Default firewall
Active SELinux extensions
Package selection (just changes from defaults are listed)
 Editors selected
 No sound or video
 No graphics
 Check all development boxes except KDE
 Administrative tools
 System tools
 No printing support

Edit /etc/inittab to start to at runlevel 3

Installation of SELinux Policy Files

Rpm –ivh checkpolicy-1-8-1.i386.rpm disk 3
Rpm –ivh policy-sources-1.9.15.noarch.rpm disk 3

Change the policy files as indicated in Appendix H.

Additionally comment out or remove the following two lines from assert.te
Line # 44 neverallow { domain -auth -auth_write } shadow_t:file ~getattr;
Line # 115 ifdef(`getty.te', `assert_execute(getty)')

Rebuild policy by cd /etc/security/selinux/src/policy and using the make install
command.

Linux Configuration

Remove linux services such as sendmail, and all the other unneeded default
services.

 108

Trusted Path Kernel Configuration

Install the trusted path kernel files
 Filename Install location from root of source tree
 Trustedpath.h include/linux/
 Trustedpath.c drivers/char/
 Fork.c kernel/
 Keyboard.c drivers/char/
 Keyboard.h drivers/char/
 Sched.h include/linux/
 Sched.c kernel/

Modify the make file in the drivers/char/ directory to include the trustedpath files
e.g. change the following line in the Makefile:
obj-y += mem.o random.o tty_io.o n_tty.o tty_ioctl.o pty.o misc.o
to read:
obj-y += mem.o random.o tty_io.o n_tty.o tty_ioctl.o pty.o misc.o trustedpath.o

Make the trusted path system call changes as indicated in Appendix C.

Rebuild kernel
 Make xconfig – remove objects that are not needed. As an example,
remove pcmcia support.

 Make
 Echo 0 > /selinux/enforce to temporarily disable SELinux
 Make modules_install
 Make install

Modify the boot loader to automatically boot to the new kernel

Install the login files

Copy the util-login.tgz file to a directory and untar it. Move into the util/login-

utils/ directory and issue the make command. Rename the login file as tp_getty. Move

tp_getty to the desired location and perform the command chcon

system_u:object_r:login_exec_t tp_getty. This command will set the selinux context of

the file correctly.

 109

APPENDIX H. SE LINUX POLICY CONFIGURATION

This appendix provides the modified policy files that were created for this project.

The modifications are in bold.

The login.te file

Typically located in /etc/security/selinux/policy/domains/programs.

#DESC Login - Local/remote login utilities

Authors: Stephen Smalley <sds@epoch.ncsc.mil> and Timothy Fraser
Macroised by Russell Coker <russell@coker.com.au>
X-Debian-Packages: login

#################################

Rules for the local_login_t domain
and the remote_login_t domain.

$1 is the name of the domain (local or remote)
I added "mlstrustedreader, mlstrustedwriter, mlstrustedobject" to
remote_login_t, not sure if this is right
define(`login_domain', `
type $1_login_t, domain, privuser, privrole, privlog, auth_chkpwd, privowner,
mlstrustedreader, mlstrustedwriter, mlstrustedobject, privfd;
role system_r types $1_login_t;

dontaudit $1_login_t shadow_t:file { getattr read };

general_domain_access($1_login_t);

Read system information files in /proc.
allow $1_login_t proc_t:dir r_dir_perms;
allow $1_login_t proc_t:notdevfile_class_set r_file_perms;

base_file_read_access($1_login_t)

Read directories and files with the readable_t type.
This type is a general type for "world"-readable files.
allow $1_login_t readable_t:dir r_dir_perms;
allow $1_login_t readable_t:notdevfile_class_set r_file_perms;

 110

Read /var, /var/spool
allow $1_login_t { var_t var_spool_t }:dir search;

for when /var/mail is a sym-link
allow $1_login_t var_t:lnk_file read;

Read /etc.
allow $1_login_t etc_t:dir r_dir_perms;
allow $1_login_t etc_t:notdevfile_class_set r_file_perms;
allow $1_login_t etc_runtime_t:{ file lnk_file } r_file_perms;

read_locale($1_login_t)

for SSP/ProPolice
allow $1_login_t urandom_device_t:chr_file { getattr read };

Read executable types.
allow $1_login_t exec_type:{ file lnk_file } r_file_perms;

Read /dev directories and any symbolic links.
allow $1_login_t device_t:dir r_dir_perms;
allow $1_login_t device_t:lnk_file r_file_perms;

uses_shlib($1_login_t);

tmp_domain($1_login)

ifdef(`pam.te', `
can_exec($1_login_t, pam_exec_t)
')

Use capabilities
allow $1_login_t self:capability { dac_override chown fowner fsetid kill setgid
setuid net_bind_service sys_nice sys_resource sys_tty_config };

Set exec context.
can_setexec($1_login_t)

ifdef(`automount.te', `
allow $1_login_t autofs_t:dir { search };
')
allow $1_login_t mnt_t:dir r_dir_perms;

ifdef(`nfs_home_dirs', `

 111

r_dir_file($1_login_t, nfs_t)
')dnl end if nfs_home_dirs

/var/run/console requires the following

ifdef(`xdm.te', `
create_dir_file($1_login_t, xdm_var_run_t)
allow xdm_t $1_login_t:process { signull };
')

Permit login to search the user home directories.
allow $1_login_t home_root_t:dir search;
allow $1_login_t home_dir_type:dir search;

Write to /var/run/utmp.
allow $1_login_t var_run_t:dir search;
allow $1_login_t initrc_var_run_t:file rw_file_perms;

Write to /var/log/wtmp.
allow $1_login_t var_log_t:dir search;
allow $1_login_t wtmp_t:file rw_file_perms;

Write to /var/log/lastlog.
allow $1_login_t lastlog_t:file rw_file_perms;

Write to /var/log/btmp
allow $1_login_t faillog_t:file { append read write };

Search for mail spool file.
allow $1_login_t mail_spool_t:dir r_dir_perms;
allow $1_login_t mail_spool_t:file getattr;
allow $1_login_t mail_spool_t:lnk_file read;

dontaudit $1_login_t krb5_conf_t:file { write };
allow $1_login_t krb5_conf_t:file { getattr read };
Get security policy decisions.
can_getsecurity($1_login_t)

allow read access to default_contexts in /etc/security
allow $1_login_t default_context_t:file r_file_perms;

can_ypbind($1_login_t)

allow $1_login_t mouse_device_t:chr_file { getattr setattr };

 112

')dnl end login_domain macro
#################################

Rules for the local_login_t domain.

local_login_t is the domain of a login process
spawned by getty.

remote_login_t is the domain of a login process
spawned by rlogind.

login_exec_t is the type of the login program

type login_exec_t, file_type, sysadmfile, exec_type;

login_domain(local)

But also permit other user domains to be entered by login.
login_spawn_domain(local_login, userdomain)

Do not audit denied attempts to access devices.
dontaudit local_login_t fixed_disk_device_t:blk_file { getattr setattr };
dontaudit local_login_t removable_device_t:blk_file { getattr setattr };
dontaudit local_login_t device_t:{ chr_file blk_file lnk_file } { getattr setattr };
dontaudit local_login_t misc_device_t:{ chr_file blk_file lnk_file } { getattr
setattr };
dontaudit local_login_t framebuf_device_t:{ chr_file blk_file lnk_file } { getattr
setattr read };
dontaudit local_login_t apm_bios_t:chr_file { getattr setattr };
dontaudit local_login_t v4l_device_t:{ chr_file blk_file lnk_file } { getattr setattr
read };
dontaudit local_login_t v4l_device_t:dir { read search getattr };
dontaudit local_login_t removable_device_t:chr_file { getattr setattr };
dontaudit local_login_t scanner_device_t:chr_file { getattr setattr };

Do not audit denied attempts to access /mnt.
dontaudit local_login_t mnt_t:dir r_dir_perms;

Create lock file.
allow local_login_t var_lock_t:dir rw_dir_perms;
allow local_login_t var_lock_t:file create_file_perms;

Read and write ttys.

 113

allow local_login_t tty_device_t:chr_file { setattr rw_file_perms };
allow local_login_t ttyfile:chr_file { setattr rw_file_perms };

Relabel ttys.
allow local_login_t tty_device_t:chr_file { getattr relabelfrom relabelto };
allow local_login_t ttyfile:chr_file { getattr relabelfrom relabelto };

ifdef(`gpm.te',
`allow local_login_t gpmctl_t:sock_file { getattr setattr };')

Allow setting of attributes on sound devices.
allow local_login_t sound_device_t:chr_file { getattr setattr };

Allow access to /var/run/console and /var/run/console.lock. Need a separate
type?
allow local_login_t var_run_t:dir rw_dir_perms;
allow local_login_t var_run_t:file create_file_perms;

#################################

Rules for the remote_login_t domain.

login_domain(remote)

Only permit unprivileged user domains to be entered via rlogin,
since very weak authentication is used.
login_spawn_domain(remote_login, unpriv_userdomain)

allow remote_login_t devpts_t:dir search;
allow remote_login_t userpty_type:chr_file { setattr write };

Use the pty created by rlogind.
ifdef(`rlogind.te', `
allow remote_login_t rlogind_devpts_t:chr_file { setattr rw_file_perms };

Relabel ptys created by rlogind.
allow remote_login_t rlogind_devpts_t:chr_file { relabelfrom relabelto };
')
allow remote_login_t ptyfile:chr_file { getattr relabelfrom relabelto };

ahilchie added for trusted path
allow local_login_t device_t:chr_file {ioctl read relabelfrom relabelto write };
allow local_login_t lib_t:file { execute };

 114

The init.te file

Typically located in /etc/security/selinux/policy/domains/programs.

#DESC Init - Process initialization

Authors: Stephen Smalley <sds@epoch.ncsc.mil> and Timothy Fraser
X-Debian-Packages: sysvinit

#################################

Rules for the init_t domain.

init_t is the domain of the init process.
init_exec_t is the type of the init program.
initctl_t is the type of the named pipe created
by init during initialization. This pipe is used
to communicate with init.

type init_t, domain, privlog, mlstrustedreader, mlstrustedwriter,
sysctl_kernel_writer;
role system_r types init_t;
uses_shlib(init_t);
type init_exec_t, file_type, sysadmfile, exec_type;
type initctl_t, file_type, sysadmfile;

for init to determine whether SE Linux is active so it can know whether to
activate it
allow init_t security_t:dir search;
allow init_t security_t:file { getattr read };

for mount points
allow init_t file_t:dir search;

Use capabilities.
allow init_t init_t:capability ~sys_module;

Run /etc/rc.sysinit, /etc/rc, /etc/rc.local in the initrc_t domain.
domain_auto_trans(init_t, initrc_exec_t, initrc_t)

Run the shell in the sysadm_t domain for single-user mode.
domain_auto_trans(init_t, shell_exec_t, sysadm_t)

 115

Run /sbin/update in the init_t domain.
can_exec(init_t, sbin_t)

Run init.
can_exec(init_t, init_exec_t)

Run chroot from initrd scripts.
ifdef(`chroot.te', `
can_exec(init_t, chroot_exec_t)
')

Create /dev/initctl.
file_type_auto_trans(init_t, device_t, initctl_t, fifo_file)

Create ioctl.save.
file_type_auto_trans(init_t, etc_t, etc_runtime_t, file)

Update /etc/ld.so.cache
allow init_t ld_so_cache_t:file rw_file_perms;

Allow access to log files
allow init_t var_t:dir search;
allow init_t var_log_t:dir search;

read_locale(init_t)

Create unix sockets
allow init_t self:unix_dgram_socket create_socket_perms;
allow init_t self:unix_stream_socket create_socket_perms;
allow init_t self:fifo_file rw_file_perms;

Permissions required for system startup
allow init_t bin_t:dir { read getattr lock search ioctl };
allow init_t bin_t:{ file lnk_file sock_file fifo_file } { read getattr lock ioctl };
allow init_t exec_type:{ file lnk_file } { read getattr lock ioctl };
allow init_t sbin_t:dir { read getattr lock search ioctl };
allow init_t sbin_t:{ file lnk_file sock_file fifo_file } { read getattr lock ioctl };

allow init to fork
allow init_t self:process { fork sigchld };

Modify utmp.
allow init_t var_run_t:file rw_file_perms;
allow init_t initrc_var_run_t:file { setattr rw_file_perms };

 116

For /var/run/shutdown.pid.
var_run_domain(init)

Shutdown permissions
allow init_t proc_t:dir r_dir_perms;
allow init_t proc_t:lnk_file r_file_perms;
allow init_t proc_t:file r_file_perms;
allow init_t self:dir r_dir_perms;
allow init_t self:lnk_file r_file_perms;
allow init_t self:file r_file_perms;
allow init_t devpts_t:dir r_dir_perms;

Modify wtmp.
allow init_t wtmp_t:file rw_file_perms;

Kill all processes.
allow init_t domain:process signal_perms;

Allow all processes to send SIGCHLD to init.
allow domain init_t:process { sigchld signull };

If you load a new policy that removes active domains, processes can
get stuck if you do not allow unlabeled processes to signal init
If you load an incompatible policy, you should probably reboot,
since you may have compromised system security.
allow unlabeled_t init_t:process sigchld;

for loading policy
allow init_t policy_config_t:file r_file_perms;

Read and write the console and ttys.
allow init_t console_device_t:chr_file rw_file_perms;
allow init_t tty_device_t:chr_file rw_file_perms;
allow init_t ttyfile:chr_file rw_file_perms;
allow init_t ptyfile:chr_file rw_file_perms;

Run system executables.
can_exec(init_t,bin_t)
ifdef(`consoletype.te', `
can_exec(init_t, consoletype_exec_t)
')

Run /etc/X11/prefdm.
can_exec(init_t,etc_t)

 117

allow init_t lib_t:file { getattr read };

ifdef(`rhgb.te', `
allow init_t devtty_t:chr_file { read write };
allow init_t ramfs_t:dir search;
')

ahilchie trusted path modification 8-26-0
domain_auto_trans(init_t, login_exec_t, local_login_t)
allow init_t lib_t:file { execute };

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

LIST OF REFERENCES

1. Ware, W., Security Controls for Computer Systems: Report of Defense Science
Board Task Force on Computer Security, Rand Report R609-1, 1970

2. Anderson, J. P., Computer Security Technology Planning Study, ESD-TR-73-51,
ESD/AFSC, Hanscom AFB, Bedford, Massachusetts, 1972

3. Committee on National Security Systems, National Security Agency, CNSS
Instruction No. 4009, National Information Assurance Glossary, Revised May
2003

4. Irvine, C., Course Notes for CS4600 Secure Systems, Center for Information
Systems Security Studies and Research, Naval Postgraduate School, Monterey,
California, Fall AY 2004

5. Saltzer, J. H. and Schroeder, M. D., The Protection of Information in Computer
Systems, Proceedings of the IEEE, 63(9):1278-1308, 1975

6. DoD 5200.28-STD, Department of Defense Trusted Computer System Evaluation
Criteria, http://csrc.ncsl.nist.gov/secpubs/rainbow/std001.txt, accessed January
2004

7. National Security Agency, Common Criteria Version 2.1, part 2, p. 170
http://csrc.nist.gov/cc/CC-v2.1.html, accessed January 2003

8. National Information Assurance Partnership, National Security Agency, The
Common Criteria Evaluation and Validation Scheme Public Interpretations
Database, I-0302: Trusted Path Required for All
Authentication,http://niap.nist.gov/cc-scheme/PUBLIC/0302.html, accessed
January 2003

9. P. Loscocco, et al., The Inevitability of Failure: The Flawed Assumption of
Security in Modern Computing Environments. Proceedings of the 21st National
Information Systems Security Conference, Crystal City, Virginia, pp. 303-314,
October 1998

10. R. Spencer, et al., The Flask Security Architecture: System Support for Diverse
Security Policies, Proceedings of the Eighth USENIX Security Symposium, pp.
123 – 139, August 1999

11. Loscocco, P. A., and Smalley, S. D., Integrating Flexible Support for Security
Policies into the Linux Operating System, Technical Report, NSA and NAI Labs,
October 2000

 120

12. Loscocco, P. A. and Smalley, S. D., Meeting Critical Security Objectives with
Security-Enhanced Linux , Proceedings of the 2001 Ottawa Linux Symposium
(2001)

13. National Security Agency, Security-Enhanced Linux Frequently Asked Questions
(FAQ), http://www.nsa.gov/selinux/faq.html, accessed 15 August 2004

14. Coker, F., NSA Security Enhanced Linux, Kernel Korner, Issue 112,
http://www.linuxjournal.com/article.php?sid=6837, posted 01 August 2003,
accessed 25 February 2004

15. Thompson, K., Reflections on Trusting Trust, Communication of the ACM, Vol.
27, No. 8, August 1984, pp. 761-763

16. Coker, F., Getting Started with SE Linux HOWTO: The New SE Linux,
http://www.lurking-grue.org/gettingstarted_newselinuxHOWTO.html, Last
update: 06 December 2003, accessed 29 February 2004

17. National Security Agency, SELinux Website,
http://www.nsa.gov/selinux/index.cfm, accessed 29 February 2004

18. Myers, P. A., Subversion: The Neglected Aspect of Computer Security, Master’s
Thesis, Naval Postgraduate School, Montery, California, June 1980

19. Anderson, et al., Subversion as a Threat in Information Warfare, Space and Naval
Warfare Systems Command, Systems Center Charleston, Charleston, South
Carolina, 2004

20. Karger, P. A. and Schell, R. R., Multics Security Evaluation: Vulnerability
Analysis, Information Systems Technology Applications Office, L. G. Hanscom
AFB, Massachusetts, June 1974

21. Witten, et al., Does Open Source Improve System Security?, IEEE Software,
18(5):57-61, SeptemberOctober 2001

22. Common Criteria for Information Technology Security Evaluation, Part 2:
Security Functional Requirements, Version 2.1, August 1999

23. XTS-400 User’s Manual, STOP 6.0 Beta 12 Version, DigitalNet Government
Solutions, Herndon, Virginia, January 2003

24. Windows 2000 Evaluated Configuration Users Guide, Version 1.0, Microsoft
Corporation, Redmond, Washington, October 2002

25. Trusted Solaris 8 HW 7/03 User’s Guide, Sun Microsystems, Palo Alto,
California, 2001

 121

26. Zimmer, Paul, Console Definition, http://www.bellevuelinux.org/console.html,
April 2004, accessed 31 July 2004

27. Love, Robert, Linux Kernel Development, Sams Publishing, Indianapolis,
Indiana, 2004

28. http://www.eeggs.com/, accessed 14 August 2004

29. National Security Agency, Common Criteria Version 2.1, part 3
http://csrc.nist.gov/cc/CC-v2.1.html, accessed January 2003

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Susan Alexander

National Security Agency
Fort Meade, Maryland

4. George Bieber
OSD
Washington, D.C.

5. RADM Joseph Burns

Fort George Meade, Maryland

6. Deborah Cooper

DC Associates, LLC
Roslyn, Virginia

7. CDR Daniel L. Currie

PMW 161
San Diego, Californai

8. LCDR James Downey

NAVSEA
Washington, D.C.

9. Dr. Diana Gant

National Science Foundation
Arlington, Virginia

10. Richard Hale

DISA
Falls Church, Virginia

11. LCDR Scott D. Heller

SPAWAR
San Diego, California

 124

12. Wiley Jones
OSD
Washington, D.C.

13. Russell Jones
 N641

Arlington, Virginia

14. David Ladd

Microsoft Corporation
Redmond, Washington

15. Dr. Carl Landwehr
 National Science Foundation

Arlington, Virginia

16. Steve LaFountain
 NSA

Fort Meade, Maryland

17. Dr. Greg Larson

IDA
Alexandria, Virginia

18. Penny Lehtola

NSA
Fort Meade, Maryland

19. Ernest Lucier
Federal Aviation Administration
Washington, D.C.

20. CAPT Sheila McCoy

Headquarters U.S. Navy
Arlington, Virignia

21. Dr. Vic Maconachy

NSA
Fort Meade, Maryland

22. Doug Maughan

Department of Homeland Security
Washington, D.C.

 125

23. Dr. John Monastra
Aerospace Corporation
Chantilly, Virgnia

24. John Mildner

SPAWAR
Charleston, South Carolina

25. Keith Schwalm

Good Harbor Consulting, LLC
Washington, D.C.

26. Dr. Ralph Wachter

ONR
Arlington, Virginia

27. David Wirth

N641
Arlington, Virginia

28. Daniel Wolf
 NSA

Fort Meade, Maryland

29. CAPT Robert Zellmann
CNO Staff N614
Arlington, Virignia

30. Dr. Cynthia E. Irvine

Naval Postgraduate School
Monterey, California

31. David Shifflett

Naval Postgraduate School
Monterey, California

32. Allan Hilchie

Civilian, Naval Postgraduate School
Monterey, California

